Radiating star with a time-dependent Karmarkar condition
暂无分享,去创建一个
[1] S. Maharaj,et al. Radiating fluid sphere immersed in an anisotropic atmosphere , 2017, 1709.02083.
[2] P. Bhar,et al. A charged anisotropic well-behaved Adler–Finch–Skea solution satisfying Karmarkar condition , 2017, 1702.00299.
[3] K. Singh,et al. Physical viability of fluid spheres satisfying the Karmarkar condition , 2016, The European Physical Journal C.
[4] N. Pant,et al. Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.
[5] Y. K. Gupta,et al. A new exact anisotropic solution of embedding class one , 2016 .
[6] K. Singh,et al. A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.
[7] S. Maharaj,et al. Radiating collapse in the presence of anisotropic stresses , 2016 .
[8] M. Govender,et al. The influence of initial conditions during dissipative collapse , 2016, 1602.02874.
[9] Y. K. Gupta,et al. Spherically symmetric charged compact stars , 2015, The European Physical Journal C.
[10] S. Maharaj,et al. Geodesic models generated by Lie symmetries , 2014, 1412.8111.
[11] Ranjan Sharma,et al. Gravitational collapse in spatially isotropic coordinates , 2013, Astrophysics and Space Science.
[12] Ranjan Sharma,et al. Collapse of a Relativistic Self-Gravitating Star with Radial Heat Flux: Impact of Anisotropic Stresses , 2013, 1304.7765.
[13] S. Maharaj,et al. Lie Symmetries for a Conformally Flat Radiating Star , 2013, 1412.6729.
[14] S. Thirukkanesh,et al. The final outcome of dissipative collapse in the presence of Λ , 2012 .
[15] Ranjan Sharma,et al. Non-adiabatic radiative collapse of a relativistic star under different initial conditions , 2012, 1206.6012.
[16] Ranjan Sharma,et al. Space–time inhomogeneity, anisotropy and gravitational collapse , 2012, 1206.6011.
[17] S. Maharaj,et al. Applications of Lie Symmetries to Higher Dimensional Gravitating Fluids , 2012, 1301.1479.
[18] S. Maharaj,et al. Shearing radiative collapse with expansion and acceleration , 2012, 1301.1485.
[19] L. Herrera,et al. Dynamical instability and the expansion-free condition , 2010, 1010.1518.
[20] L. Herrera,et al. On the stability of the shear–free condition , 2010, 1001.3020.
[21] L. Herrera,et al. EXPANSION-FREE EVOLVING SPHERES M UST HAVE INHOM OGENEOUS ENERGY DENSITY DISTRIBUTIONS , 2009, 0903.4774.
[22] K. Govinder,et al. Thermal evolution of a radiating anisotropic star with shear , 2005, gr-qc/0509088.
[23] S. Maharaj,et al. Radiating collapse with vanishing Weyl stresses , 2004, astro-ph/0408148.
[24] A. Banerjee,et al. SPHERICAL COLLAPSE WITH HEAT FLOW AND WITHOUT HORIZON , 2002, gr-qc/0209035.
[25] K. Govinder,et al. Causal solutions for radiating stellar collapse , 2001 .
[26] S. Maharaj,et al. Collapse of a charged radiating star with shear , 2000 .
[27] R. Maartens,et al. Relaxational effects in radiating stellar collapse , 1998, gr-qc/9810001.
[28] R. Maartens,et al. A CAUSAL MODEL OF RADIATING STELLAR COLLAPSE , 1997, astro-ph/9710360.
[29] R. Maartens,et al. Inflation Driven by Causal Heat Flux , 1997, gr-qc/9710135.
[30] N. Santos. Non-adiabatic radiating collapse , 1985 .
[31] S. N. Pandey,et al. Insufficiency of Karmarkar's condition , 1982 .
[32] E. N. Glass. Shear-free collapse with heat flow☆ , 1981 .
[33] M. Kohler,et al. Zentralsymmetrische statische Schwerefelder mit Räumen der Klasse 1 , 1965 .
[34] P. C. Vaidya. The gravitational field of a radiating star , 1951 .
[35] K. R. Karmarkar. Gravitational metrics of spherical symmetry and class one , 1948 .