Radiating star with a time-dependent Karmarkar condition

[1]  S. Maharaj,et al.  Radiating fluid sphere immersed in an anisotropic atmosphere , 2017, 1709.02083.

[2]  P. Bhar,et al.  A charged anisotropic well-behaved Adler–Finch–Skea solution satisfying Karmarkar condition , 2017, 1702.00299.

[3]  K. Singh,et al.  Physical viability of fluid spheres satisfying the Karmarkar condition , 2016, The European Physical Journal C.

[4]  N. Pant,et al.  Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.

[5]  Y. K. Gupta,et al.  A new exact anisotropic solution of embedding class one , 2016 .

[6]  K. Singh,et al.  A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.

[7]  S. Maharaj,et al.  Radiating collapse in the presence of anisotropic stresses , 2016 .

[8]  M. Govender,et al.  The influence of initial conditions during dissipative collapse , 2016, 1602.02874.

[9]  Y. K. Gupta,et al.  Spherically symmetric charged compact stars , 2015, The European Physical Journal C.

[10]  S. Maharaj,et al.  Geodesic models generated by Lie symmetries , 2014, 1412.8111.

[11]  Ranjan Sharma,et al.  Gravitational collapse in spatially isotropic coordinates , 2013, Astrophysics and Space Science.

[12]  Ranjan Sharma,et al.  Collapse of a Relativistic Self-Gravitating Star with Radial Heat Flux: Impact of Anisotropic Stresses , 2013, 1304.7765.

[13]  S. Maharaj,et al.  Lie Symmetries for a Conformally Flat Radiating Star , 2013, 1412.6729.

[14]  S. Thirukkanesh,et al.  The final outcome of dissipative collapse in the presence of Λ , 2012 .

[15]  Ranjan Sharma,et al.  Non-adiabatic radiative collapse of a relativistic star under different initial conditions , 2012, 1206.6012.

[16]  Ranjan Sharma,et al.  Space–time inhomogeneity, anisotropy and gravitational collapse , 2012, 1206.6011.

[17]  S. Maharaj,et al.  Applications of Lie Symmetries to Higher Dimensional Gravitating Fluids , 2012, 1301.1479.

[18]  S. Maharaj,et al.  Shearing radiative collapse with expansion and acceleration , 2012, 1301.1485.

[19]  L. Herrera,et al.  Dynamical instability and the expansion-free condition , 2010, 1010.1518.

[20]  L. Herrera,et al.  On the stability of the shear–free condition , 2010, 1001.3020.

[21]  L. Herrera,et al.  EXPANSION-FREE EVOLVING SPHERES M UST HAVE INHOM OGENEOUS ENERGY DENSITY DISTRIBUTIONS , 2009, 0903.4774.

[22]  K. Govinder,et al.  Thermal evolution of a radiating anisotropic star with shear , 2005, gr-qc/0509088.

[23]  S. Maharaj,et al.  Radiating collapse with vanishing Weyl stresses , 2004, astro-ph/0408148.

[24]  A. Banerjee,et al.  SPHERICAL COLLAPSE WITH HEAT FLOW AND WITHOUT HORIZON , 2002, gr-qc/0209035.

[25]  K. Govinder,et al.  Causal solutions for radiating stellar collapse , 2001 .

[26]  S. Maharaj,et al.  Collapse of a charged radiating star with shear , 2000 .

[27]  R. Maartens,et al.  Relaxational effects in radiating stellar collapse , 1998, gr-qc/9810001.

[28]  R. Maartens,et al.  A CAUSAL MODEL OF RADIATING STELLAR COLLAPSE , 1997, astro-ph/9710360.

[29]  R. Maartens,et al.  Inflation Driven by Causal Heat Flux , 1997, gr-qc/9710135.

[30]  N. Santos Non-adiabatic radiating collapse , 1985 .

[31]  S. N. Pandey,et al.  Insufficiency of Karmarkar's condition , 1982 .

[32]  E. N. Glass Shear-free collapse with heat flow☆ , 1981 .

[33]  M. Kohler,et al.  Zentralsymmetrische statische Schwerefelder mit Räumen der Klasse 1 , 1965 .

[34]  P. C. Vaidya The gravitational field of a radiating star , 1951 .

[35]  K. R. Karmarkar Gravitational metrics of spherical symmetry and class one , 1948 .