Concepts, methodologies, and tools of an integrated geographical simulation and optimization system

Although being increasingly powerful in handling spatial data, geographical information systems (GIS) still lack the powerful functionality for process modeling in terms of simulation and optimization. This article discusses the concepts and methodologies of a geographical simulation and optimization system (GeoSOS). GeoSOS integrates cellular automata (CA), agent-based models (ABMs), and swarm intelligence models (SIMs) for solving process simulation and optimization problems. A general form of the so-called interaction rules is proposed for implementing this integrated system. The GeoSOS software is developed to provide these complementary functions that are unavailable in the current GIS. Experiments have demonstrated that GeoSOS is able to model the reciprocal relationships between urban simulation and spatial optimization (e.g., facility sitting, transport development, and natural protection) in fast-growing regions. Better modeling performances have been achieved using the coupling strategies of GeoSOS.

[1]  Paul M. Torrens,et al.  Geographic Automata Systems , 2005, Int. J. Geogr. Inf. Sci..

[2]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[3]  Eric Damian Kelly,et al.  The Transportation Land-Use Link , 1994 .

[4]  Xiaoping Liu,et al.  Ant intelligence for solving optimal path‐covering problems with multi‐objectives , 2009, Int. J. Geogr. Inf. Sci..

[5]  Xia Li,et al.  Defining agents' behaviors to simulate complex residential development using multicriteria evaluation. , 2007, Journal of environmental management.

[6]  Christophe Cambier,et al.  SIMULATING THE INTERACTION BETWEEN A SOCIETY AND A RENEWABLE RESOURCE , 1993 .

[7]  I. Benenson MULTI-AGENT SIMULATIONS OF RESIDENTIAL DYNAMICS IN THE CITY , 1998 .

[8]  M. Batty,et al.  Simulating Emergent Urban Form Using Agent-Based Modeling: Desakota in the Suzhou-Wuxian Region in China , 2007 .

[9]  Gian Luca Foresti,et al.  A distributed probabilistic system for adaptive regulation of image processing parameters , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Herry Purnomo,et al.  Developing multi-stakeholder forest management scenarios: a multi-agent system simulation approach applied in Indonesia , 2005 .

[11]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[12]  Stephanie A. Snyder,et al.  A Scenario Optimization Model for Dynamic Reserve Site Selection , 2004 .

[13]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[14]  D. Hensher Handbook of Transport Geography and Spatial Systems , 2004 .

[15]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[16]  P. Gong,et al.  Assessment of the Urban Development Plan of Beijing by Using a CA-Based Urban Growth Model , 2002 .

[17]  Michael Batty,et al.  From Cells to Cities , 1994 .

[18]  Nan Liu,et al.  Using the Ant Algorithm to Derive Pareto Fronts for Multiobjective Siting of Emergency Service Facilities , 2005 .

[19]  Vishnu Vyas,et al.  An Algorithm for Site Selection in GIS based on Swarm Intelligence , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Ashton M. Shortridge,et al.  Exploring Complexity in a Human–Environment System: An Agent-Based Spatial Model for Multidisciplinary and Multiscale Integration , 2005 .

[21]  Keith C. Clarke,et al.  Loose-Coupling a Cellular Automaton Model and GIS: Long-Term Urban Growth Prediction for San Francisco and Washington/Baltimore , 1998, Int. J. Geogr. Inf. Sci..

[22]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .

[23]  A. Yeh,et al.  Urban Simulation Using Principal Components Analysis and Cellular Automata for Land-Use Planning , 2002 .

[24]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[25]  F. Wu,et al.  Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation , 1998 .

[26]  Alex Hagen-Zanker,et al.  Map comparison methods that simultaneously address overlap and structure , 2006, J. Geogr. Syst..

[27]  Eastman J. Ronald,et al.  RASTER PROCEDURES FOR MULTI-CRITERIA/MULTI-OBJECTIVE DECISIONS , 1995 .

[28]  Nicholas Mark Gotts,et al.  Comparison of empirical methods for building agent-based models in land use science , 2007 .

[29]  Xiangzheng Deng,et al.  Growth, population and industrialization, and urban land expansion of China , 2008 .

[30]  Alex Alves Freitas,et al.  Data mining with an ant colony optimization algorithm , 2002, IEEE Trans. Evol. Comput..

[31]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Joshua M. Epstein,et al.  Understanding Anasazi culture change through agent-based modeling , 2000 .

[33]  R. Gil Pontius,et al.  Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA , 2001 .

[34]  Wang Yin Chai,et al.  An Intelligent GIS-Based Spatial Zoning System with Multiobjective Hybrid Metaheuristic Method , 2004, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems.

[35]  A. Karlqvist,et al.  Spatial interaction theory and planning models , 1978 .

[36]  Tao Liu,et al.  Integration of small world networks with multi-agent systems for simulating epidemic spatiotemporal transmission , 2010, Chinese science bulletin = Kexue tongbao.

[37]  I. Benenson,et al.  Entity-Based Modeling of Urban Residential Dynamics: The Case of Yaffo, Tel Aviv , 2002 .

[38]  Xia Li,et al.  Data mining of cellular automata's transition rules , 2004, Int. J. Geogr. Inf. Sci..

[39]  Mark Gahegan,et al.  Guest Editorial: What is Geocomputation? , 1999, Trans. GIS.

[40]  Xia Li,et al.  Discovering and evaluating urban signatures for simulating compact development using cellular automata , 2008 .

[41]  Nan Liu,et al.  A GIS supported Ant algorithm for the linear feature covering problem with distance constraints , 2006, Decis. Support Syst..

[42]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[43]  E. Ostrom,et al.  Empirically Based, Agent-based models , 2006 .

[44]  Albert K. W. Yeung,et al.  Concepts And Techniques Of Geographic Information Systems , 2002 .

[45]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[46]  Alan T. Murray,et al.  A stochastically constrained cellular model of urban growth , 2000 .

[47]  Julie Delaney Geographical Information Systems: An Introduction , 2000 .

[48]  Xia Li,et al.  Modelling sustainable urban development by the integration of constrained cellular automata and GIS , 2000, Int. J. Geogr. Inf. Sci..

[49]  D. Sui,et al.  Modeling the dynamics of landscape structure in Asia's emerging desakota regions : a case study in Shenzhen , 2001 .

[50]  B. Wee Land use and transport: research and policy challenges , 2002 .

[51]  Xiaoping Liu,et al.  Intelligent GIS for solving high‐dimensional site selection problems using ant colony optimization techniques , 2009, Int. J. Geogr. Inf. Sci..

[52]  M. Wegener Overview of Land Use Transport Models , 2004 .