Algebraic decoding for doubly cyclic convolutional codes

An iterative decoding algorithm for convolutional codes is presented. It successively processes $N$ consecutive blocks of the received word in order to decode the first block. A bound is presented showing which error configurations can be corrected. The algorithm can be efficiently used on a particular class of convolutional codes, known as doubly cyclic convolutional codes. Due to their highly algebraic structure those codes are well suited for the algorithm and the main step of the procedure can be carried out using Reed-Solomon decoding. Examples illustrate the decoding and a comparison with existing algorithms is being made.

[1]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[2]  Joachim Rosenthal,et al.  An Algebraic Decoding Algorithm for Convolutional Codes , 1999 .

[3]  Iglesias Curto,et al.  A study of convolutional codes. Classification, new families and decoding , 2008 .

[4]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[5]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[6]  José Ignacio Iglesias Curto,et al.  Convolutional Goppa codes , 2003, IEEE Transactions on Information Theory.

[7]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[8]  P. Piret,et al.  Structure and constructions of cyclic convolutional codes , 1976, IEEE Trans. Inf. Theory.

[9]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[10]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[11]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[12]  Heide Gluesing-Luerssen,et al.  On Doubly-Cyclic Convolutional Codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[13]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[14]  Fai Lung Tsang,et al.  Skew rings, convolutional codes and discrete systems , 2008 .

[15]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[16]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[17]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[18]  Uwe Helmke,et al.  Receding horizon decoding of convolutional codes , 2009, ArXiv.

[19]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[20]  Kees Roos On the structure of convolutional and cyclic convolutional codes , 1979, IEEE Trans. Inf. Theory.

[21]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Ettore Fornasini,et al.  Multidimensional convolutional codes in the behavioral approach , 2010 .

[24]  Jørn Justesen,et al.  An algebraic construction of rate 1/v -ary codes; algebraic construction (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[25]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .

[26]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[27]  Thomas Kailath,et al.  Linear Systems , 1980 .

[28]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..