Nitrogen source-dependent inhibition of yeast growth by glycine and its N-methylated derivatives

[1]  T. Linder Phenotypical characterisation of a putative ω-amino acid transaminase in the yeast Scheffersomyces stipitis , 2018, Archives of Microbiology.

[2]  T. Linder Genetic redundancy in the catabolism of methylated amines in the yeast Scheffersomyces stipitis , 2017, Antonie van Leeuwenhoek.

[3]  M. Blackwell Made for Each Other: Ascomycete Yeasts and Insects , 2017, Microbiology spectrum.

[4]  T. Linder CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis). , 2014, Microbiology.

[5]  Guoyao Wu,et al.  Glycine metabolism in animals and humans: implications for nutrition and health , 2013, Amino Acids.

[6]  J. Latgé,et al.  Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus , 2013, Eukaryotic Cell.

[7]  A. Hipkiss,et al.  L-Carnosine Affects the Growth of Saccharomyces cerevisiae in a Metabolism-Dependent Manner , 2012, PloS one.

[8]  Jia Liu,et al.  Pretreatment of the yeast antagonist, Candida oleophila, with glycine betaine increases oxidative stress tolerance in the microenvironment of apple wounds. , 2012, International journal of food microbiology.

[9]  Jia Liu,et al.  Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. , 2011, FEMS microbiology ecology.

[10]  Jia Liu,et al.  Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. , 2011, International journal of food microbiology.

[11]  Audrey P Gasch,et al.  Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. , 2008, Molecular biology of the cell.

[12]  N. Murata,et al.  Glycinebetaine: an effective protectant against abiotic stress in plants. , 2008, Trends in plant science.

[13]  Anders Blomberg,et al.  Chemogenetic fingerprinting by analysis of cellular growth dynamics , 2008, BMC chemical biology.

[14]  N. Magan,et al.  Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA‐1 and viability after spray‐drying , 2008, Journal of applied microbiology.

[15]  J. Latgé The cell wall: a carbohydrate armour for the fungal cell , 2007, Molecular microbiology.

[16]  W. Kladwang,et al.  Hypersaline stress induces the turnover of phosphatidylcholine and results in the synthesis of the renal osmoprotectant glycerophosphocholine in Saccharomyces cerevisiae. , 2006, FEMS yeast research.

[17]  H. Goto,et al.  Effect of Glycine on Helicobacter pylori In Vitro , 2004, Antimicrobial Agents and Chemotherapy.

[18]  P. Krader,et al.  Glycine betaine as a cryoprotectant for prokaryotes. , 2004, Journal of microbiological methods.

[19]  E. Tiligada,et al.  Molybdate induces thermotolerance in yeast , 1999, Letters in applied microbiology.

[20]  R. Pearlman,et al.  Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. , 1997, Gene.

[21]  W. M. Ingledew,et al.  Lysine inhibition of Saccharomyces cerevisiae: role of repressible L-lysine ε-aminotransferase , 1994, World journal of microbiology & biotechnology.

[22]  W. M. Ingledew,et al.  Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae , 1994, Applied and environmental microbiology.

[23]  W. J. Middelhoven,et al.  Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds , 1991, Antonie van Leeuwenhoek.

[24]  T. G. Watson Effect of carbon source on lysine-mediated inhibition of postexponential growth of Saccharomyces cerevisiae , 1983, Journal of bacteriology.

[25]  D. Howard,et al.  Proline uptake in Candida albicans. , 1981, Journal of general microbiology.

[26]  T. Cooper,et al.  Basic amino acid inhibition of cell division and macromolecular synthesis in Saccharomyces cerevisiae. , 1978, Journal of general microbiology.

[27]  T. Cooper,et al.  Basic amino acid inhibition of growth in Saccharomyces cerevisiae. , 1976, Biochemical and biophysical research communications.

[28]  K. Schleifer,et al.  Mode of Action of Glycine on the Biosynthesis of Peptidoglycan , 1973, Journal of bacteriology.

[29]  N. Magaña-Schwencke,et al.  Imino acid transport in yeast: the uptake of sarcosine. , 1973, Biochimica et biophysica acta.

[30]  K. Izaki,et al.  Effets of Glycine and D-Amino Acids on Growth of Various Microorganisms , 1969 .

[31]  T. Linder Nitrogen Assimilation Pathways in Budding Yeasts , 2019, Non-conventional Yeasts: from Basic Research to Application.

[32]  T. Alamäe,et al.  Non-conventional Yeasts: from Basic Research to Application , 2019 .

[33]  B. Brady Utilization of amino compounds by yeasts of the genusSaccharomyces , 2005, Antonie van Leeuwenhoek.

[34]  A. Goffeau,et al.  In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. , 1998, Microbial drug resistance.

[35]  J. Gordon,et al.  Involution forms of the genus vibrio produced by glycine , 1943 .

[36]  S. F. Ashby,et al.  The Fungi of Stigmatomycosis , 1926 .