Modal Logics of Space

1 The interest of Space When thinking about the physical world, modal logicians have taken Time as their main theme, because it fits so well with an interest in the flow of information and computation. Spatial logics have been footnotes to the tradition – even though the axiomatic method was largely geometrical. An exception is Tarski's early work on deviant geometrical primitives, and his decidable first-order axiomatization of elementary geometry. Today Space remains intriguing – both for mathematical reasons, and given the amount of work in CS and AI on visual reasoning and image processing. These two concerns are by no means the same, but both involve logic of spatial structures.

[1]  Marco Aiello,et al.  The Mathematical Morpho-Logical View on Reasoning about Space , 2007, IJCAI.

[2]  B Shehtman Valentin,et al.  “Everywhere” and “Here”. , 1999 .

[3]  Dov M. Gabbay,et al.  Products of Modal Logics, Part 1 , 1998, Log. J. IGPL.

[4]  N. Malcolm On Knowledge and Belief , 1954 .

[5]  Valentin B. Shehtman,et al.  Modal logics of domains on the real plane , 1983 .

[6]  A. Tarski What is Elementary Geometry , 1959 .

[7]  Hannes Leitgeb,et al.  A New Analysis of Quasianalysis , 2007, J. Philos. Log..

[8]  A. Tarski Der Aussagenkalkül und die Topologie , 1938 .

[9]  J. Benthem,et al.  Logical Patterns in Space , 2002 .

[10]  Johan van Benthem,et al.  Information Transfer across Chu Spaces , 2000, Log. J. IGPL.

[11]  Valentin B. Shehtman,et al.  A Logic with Progressive Tenses , 1993 .

[12]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[13]  Johan van Benthem,et al.  Multimo dal Logics of Products of Topologies , 2007, Stud Logica.

[14]  Marco Aiello,et al.  A Spatial Similarity Measure based on Games: Theory and Practice , 2002, Log. J. IGPL.

[15]  Yde Venema,et al.  Algebras and coalgebras , 2007, Handbook of Modal Logic.

[16]  Ken Binmore,et al.  Game theory and the social contract , 1984 .

[17]  M. de Rijke,et al.  Modal Logic: Extended Modal Logic , 2001 .

[18]  Lawrence S. Moss,et al.  Topological Reasoning and the Logic of Knowledge , 1996, Ann. Pure Appl. Log..

[19]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[20]  Krister Segerberg,et al.  Modal logics with linear alternative relations , 2008 .

[21]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[22]  Sergei N. Artëmov Modal logic in mathematics , 2007, Handbook of Modal Logic.

[23]  Krister Segerberg,et al.  Two-dimensional modal logic , 1973, J. Philos. Log..

[24]  Territoire Urbain,et al.  Convention , 1955, Hidden Nature.

[25]  Spencer Gerhardt,et al.  A Construction Method for Modal Logics of Space , 2005 .

[26]  Mark Witkowski,et al.  From Images to Bodies: Modelling and Exploiting Spatial Occlusion and Motion Parallax , 2001, IJCAI.

[27]  Y. Venema A crash course in arrow logic , 1994 .

[28]  Johan van Benthem,et al.  Temporal Patterns and Modal Structure , 1999, Log. J. IGPL.

[29]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[30]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[31]  David Peleg,et al.  Concurrent dynamic logic , 1985, STOC '85.

[32]  Vaughan Pratt Chu Spaces , 1999 .

[33]  Yde Venema,et al.  Undecidable theories of Lyndon algebras , 2001, Journal of Symbolic Logic.

[34]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[35]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[36]  Guram Bezhanishvili,et al.  Modal Logics for Products of Topologies , 2004 .

[37]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[38]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[39]  John P. Burgess,et al.  Logic and time , 1979, Journal of Symbolic Logic.

[40]  K. Jon Barwise,et al.  Three Views of Common Knowledge , 1988, TARK.

[41]  J. Plato The Axioms of Constructive Geometry , 1995, Ann. Pure Appl. Log..

[42]  Marco Aiello,et al.  Spatial reasoning : theory and practice , 2002 .

[43]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[44]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[45]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[46]  Guram Bezhanishvili,et al.  Some Results on Modal Axiomatization and Definability for Topological Spaces , 2005, Stud Logica.

[47]  Robert Goldblatt Diodorean modality in Minkowski spacetime , 1980 .

[48]  Yehoshua Bar-Hillel,et al.  Metamathematical Properties of Some Affine Geometries , 1971 .

[49]  Johan van Benthem,et al.  Reasoning About Space: The Modal Way , 2003, J. Log. Comput..

[50]  maarten marx Algebraic Relativization and Arrow Logic , 1995 .

[51]  Kees Doets,et al.  Basic model theory , 1996, Studies in logic, language and information.

[52]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[53]  M. de Rijke,et al.  Bisimulations for Temporal Logic , 1997, J. Log. Lang. Inf..

[54]  Philippe Balbiani,et al.  The modal multilogic of geometry , 1998, J. Appl. Non Class. Logics.

[55]  David I. Beaver,et al.  Words, Proofs and Diagrams , 2002 .

[56]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[57]  Yde Venema,et al.  Points, Lines and Diamonds: A two-sorted Modal Logic for Projective Planes , 1999, J. Log. Comput..

[58]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[59]  Andreas Blass,et al.  Infinitary combinatorics and modal logic , 1990, Journal of Symbolic Logic.

[60]  Leo Esakia,et al.  Intuitionistic logic and modality via topology , 2004, Ann. Pure Appl. Log..

[61]  P. Du Val,et al.  A Modern View of Geometry , 1962 .

[62]  Johan van Benthem,et al.  A ModalWalk Through Space , 2002, J. Appl. Non Class. Logics.

[63]  C. Guarneri Cornell University Press , 1991 .

[64]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[65]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[66]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[67]  Marc Pauly,et al.  Logic for social software , 2000 .

[68]  Guram Bezhanishvili,et al.  Completeness of S4 with respect to the real line: revisited , 2005, Ann. Pure Appl. Log..

[69]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[70]  John H. Reif,et al.  The complexity of elementary algebra and geometry , 1984, STOC '84.

[71]  Frank Wolter,et al.  Comparative Similarity, Tree Automata, and Diophantine Equations , 2005, LPAR.

[72]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[73]  R. Goldblatt Orthogonality and spacetime geometry , 1987 .

[74]  Luis Fariñas del Cerro,et al.  Modal Logics for Incidence Geometries , 1997, J. Log. Comput..

[75]  Johan van Benthem,et al.  Euclidean Hierarchy in Modal Logic , 2003, Stud Logica.

[76]  N. Kurtonina,et al.  Frames and Labels , 1995 .

[77]  J.F.A.K. van Benthem Invariance and Definability: two faces of logical constants , 2002 .

[78]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[79]  I. Moerdijk,et al.  Some topological spaces which are universal for intuitionistic predicate logic , 1982 .

[80]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[81]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[82]  Guram Bezhanishvili,et al.  Scattered, Hausdorff-reducible, and hereditarily irresolvable spaces , 2003 .

[83]  Johan van Benthem Logic and the flow of information , 1995 .

[84]  Darko Sarenac,et al.  The Geometry of Knowledge , 2003 .

[85]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[86]  Patrick J. Hayes,et al.  A Common-Sense Theory of Time , 1985, IJCAI.

[87]  Nick Bezhanishvili,et al.  Axiomatization of ML and Cheq , 2006 .

[88]  B. C. Roy,et al.  Volume of abstracts , 1964 .

[89]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[90]  Alessandro Facchini,et al.  Aspects of Universal Logic , 2004 .

[91]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[92]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[93]  Alberto H. F. Laender,et al.  Logic of Time , 2009, Encyclopedia of Database Systems.

[94]  Johan van Benthem,et al.  Space, time, and computation: Trends and problems , 2004, Applied Intelligence.

[95]  Boris Konev,et al.  On Dynamic Topological and Metric Logics , 2006, Studia Logica: An International Journal for Symbolic Logic.

[96]  Dmitry Sustretov,et al.  Modal languages for topology: Expressivity and definability , 2006, Ann. Pure Appl. Log..

[97]  G. Kerdiles,et al.  Saying It with Pictures: a logical landscape of conceptual graphs , 2001 .

[98]  J. van Leeuwen,et al.  Logic Programming , 2002, Lecture Notes in Computer Science.

[99]  A. Troelstra Lectures on linear logic , 1992 .

[100]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[101]  Frank Wolter,et al.  Products of ‘transitive” modal logics , 2005, Journal of Symbolic Logic.