Slow convergence to zero for a parabolic equation with a supercritical nonlinearity

[1]  P. Polácik,et al.  Singularity and decay estimates in superlinear problems via liouville-type theorems. Part II: Parabolic equations , 2007 .

[2]  M. Fila,et al.  Optimal lower bound of the grow-up rate for a supercritical parabolic equation , 2006 .

[3]  M. Fila,et al.  Convergence Rate for a Parabolic Equation with Supercritical Nonlinearity , 2005 .

[4]  M. Fila,et al.  Grow-up rate of solutions for a supercritical semilinear diffusion equation , 2004 .

[5]  E. Yanagida,et al.  On bounded and unbounded global solutions of a supercritical semilinear heat equation , 2003 .

[6]  F. Weissler,et al.  REGULAR SELF-SIMILAR SOLUTIONS OF THE NONLINEAR HEAT EQUATION WITH INITIAL DATA ABOVE THE SINGULAR STEADY STATE , 2003 .

[7]  Xuefeng Wang,et al.  Further study on a nonlinear heat equation , 2001 .

[8]  Xuefeng Wang,et al.  On the stability and instability of positive steady states of a semilinear heat equation in ℝn , 1992 .

[9]  Yi Li,et al.  Asymptotic behavior of positive solutions of equation Δu + K(x) up = 0 in Rn , 1992 .

[10]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  E. Yanagida,et al.  A Liouville property and quasiconvergence for a semilinear heat equation , 2005 .

[12]  Victor A. Galaktionov,et al.  Continuation of blowup solutions of nonlinear heat equations in several space dimensions , 1997 .

[13]  Wei-Ming Ni,et al.  On the Stability and Instability of Positive Steady States of a Semilinear Heat Equation in $mathbb{R}^n$ (eng) , 1992 .

[14]  W. Ni,et al.  Global existence, large time behavior and life span of solutions of a semilinear parabolic cauchy problem , 1992 .