Generic Nonlinear Model of Reduced Scale UAVs

This paper proposes, through a survey of models of several UAV-Structures, a generic nonlinear model for reduced scale aerial robotic vehicles (6 DOF). Dynamics of an aircraft and some VTOL UAV (quadricopter, ducted fan and classical helicopter) are illustrated. This generic model focuses only on the key physical efforts acting on the dynamics in order to be sufficiently simple to design a controller. The Small Body Forces expression which can introduce a zero dynamics is then discussed.

[1]  Bernard Mettler,et al.  Nonlinear model for a small-size acrobatic helicopter , 2001 .

[2]  Franck Plestan,et al.  Robust control of an autonomous reduced scale helicopter in presence of wind gusts , 2006 .

[3]  S. Shankar Sastry,et al.  Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft , 1992, Autom..

[4]  T Cheviron,et al.  Robust Guidance and Control of Autonomous Aerial Vehicles in Presence of Wind Gusts , 2007 .

[5]  Tarek Hamel,et al.  Zero dynamics analysis for IBVS control of under-actuated rigid body dynamics , 2003 .

[6]  Philippe Souères,et al.  Modélisation, estimation et contrôle des drones à voilures tournantes : Un aperçu des projets de recherche français , 2005 .

[7]  Robert E. Mahony,et al.  A hierarchical control strategy for the autonomous navigation of a ducted fan flying robot , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  T. Hamel,et al.  Hovering flight stabilization in wind gusts for ducted fan UAV , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Mario Innocenti,et al.  Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling , 1999 .

[10]  T. Hamel,et al.  A practical Visual Servo Control for a Unmanned Aerial Vehicle , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[11]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[12]  R. Mahony,et al.  Robust trajectory tracking for a scale model autonomous helicopter , 2004 .

[13]  Ronald A. Hess,et al.  Study of Helicopter Roll Control Effectiveness Criteria. , 1986 .

[14]  Bernard Mettler,et al.  Identification Modeling and Characteristics of Miniature Rotorcraft , 2002 .

[15]  Petar V. Kokotovic,et al.  A control engineer's introduction to singular perturbations , 1972 .

[16]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[17]  Rogelio Lozano,et al.  Real-time stabilization and tracking of a four-rotor mini rotorcraft , 2004, IEEE Transactions on Control Systems Technology.

[18]  Bernard Brogliato,et al.  Nonlinear modelling and control of helicopters , 2003, Autom..

[19]  Roland Siegwart,et al.  Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[20]  H. Sira-Ramirez,et al.  Regulation of the longitudinal dynamics of an helicopter: a Liouvillian systems approach , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[21]  Christian Munzinger Development Of A Real-Time Flight Simulator For An Experimental Model Helicopter , 1998 .

[22]  S. Sastry,et al.  Output tracking control design of a helicopter model based on approximate linearization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).