Optical trapping of silver nanoplatelets.

Optical trapping of silver nanoplatelets obtained with a simple room temperature chemical synthesis technique is reported. Trap spring constants are measured for platelets with different diameters to investigate the size-scaling behaviour. Experimental data are compared with models of optical forces based on the dipole approximation and on electromagnetic scattering within a T-matrix framework. Finally, we discuss applications of these nanoplatelets for surface-enhanced Raman spectroscopy.

[1]  C. Satriano,et al.  Tuning the structural and optical properties of gold/silver nano-alloys prepared by laser ablation in liquids for optical limiting, ultra-sensitive spectroscopy, and optical trapping , 2012 .

[2]  Younan Xia,et al.  Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. , 2006, The journal of physical chemistry. B.

[3]  M. Meneghetti,et al.  Laser ablation synthesis of gold nanoparticles in organic solvents. , 2006, The journal of physical chemistry. B.

[4]  Simon Hanna,et al.  Optical trapping of spheroidal particles in Gaussian beams. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  G. Volpe,et al.  Simulation of a Brownian particle in an optical trap , 2013 .

[6]  P. Schuck,et al.  Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy. , 2011, Physical review letters.

[7]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[8]  R. Wannemacher,et al.  Failure of local Mie theory: optical spectra of colloidal aggregates , 2001 .

[9]  M. Meneghetti,et al.  Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  Norbert F. Scherer,et al.  Three-dimensional optical trapping and manipulation of single silver nanowires. , 2012, Nano letters.

[12]  F Moreno,et al.  Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[13]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[14]  Antonio Alvaro Ranha Neves,et al.  Exact partial wave expansion of optical beams with respect to an arbitrary origin. , 2006, Optics letters.

[15]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[16]  Moreno Meneghetti,et al.  Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids , 2011 .

[17]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[18]  G. Volpe,et al.  Torque detection using Brownian fluctuations. , 2006, Physical review letters.

[19]  J. G. de la Torre,et al.  Improved calculation of rotational diffusion and intrinsic viscosity of bead models for macromolecules and nanoparticles. , 2007, The journal of physical chemistry. B.

[20]  V. Nicolosi,et al.  Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition , 2007 .

[21]  F. Tantussi,et al.  SERS Enhancement and Field Confinement in Nanosensors Based on Self-Organized Gold Nanowires Produced by Ion-Beam Sputtering , 2014 .

[22]  Norman R. Heckenberg,et al.  T-matrix method for modelling optical tweezers , 2011 .

[23]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[24]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[25]  P Guyot-Sionnest,et al.  Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. , 2007, Optics express.

[26]  J. García de la Torre,et al.  Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. , 1999, Biophysical journal.

[27]  S. Simpson Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications , 2014 .

[28]  S. Man,et al.  Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles , 2007 .

[29]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[30]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[31]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[32]  H. Rubinsztein-Dunlop,et al.  Symmetry and the generation and measurement of optical torque , 2008, 0812.2039.

[33]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[34]  Encai Hao,et al.  Synthesis and Optical Properties of Anisotropic Metal Nanoparticles , 2004, Journal of Fluorescence.

[35]  Simon Hanna,et al.  Polarization-induced torque in optical traps , 2007 .

[36]  Fredrik Svedberg,et al.  Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. , 2006, Nano letters.

[37]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[38]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[39]  Francesco Stellacci,et al.  A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly , 2010 .

[40]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[41]  Moreno Meneghetti,et al.  Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. , 2011, ACS nano.

[42]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[43]  Lim Wei Yap,et al.  Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. , 2014, Nanoscale.

[44]  H. Rubinsztein-Dunlop,et al.  Numerical modelling of optical trapping , 2001 .

[45]  F G Diaz,et al.  HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. , 1994, Biophysical journal.

[46]  P. Etchegoin,et al.  Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. , 2011, Chemical communications.

[47]  A. Mazzulla,et al.  Polarization-dependent optomechanics mediated by chiral microresonators , 2014, Nature Communications.

[48]  Xiaohua Huang,et al.  Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy , 2010 .

[49]  P. Albella,et al.  Surface inspection by monitoring spectral shifts of localized plasmon resonances. , 2008, Optics express.

[50]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[51]  Cristiano D'Andrea,et al.  Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. , 2013, ACS nano.

[52]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[53]  J. Santamaría,et al.  Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. , 2014, Nanoscale.

[54]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[55]  J. Zhang,et al.  Plasmonic Optical Properties and Applications of Metal Nanostructures , 2008 .

[56]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[57]  Chun-Hsien Chou,et al.  Plasmonic nanostructures for light trapping in organic photovoltaic devices. , 2014, Nanoscale.

[58]  Zijie Yan,et al.  Why single-beam optical tweezers trap gold nanowires in three dimensions. , 2013, ACS nano.