In situ Raman study of nickel bicarbonate for high-performance energy storage device

[1]  Meilin Liu,et al.  Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors , 2019, Nano Energy.

[2]  Jianji Wang,et al.  Dopamine constructing composite of Ni(HCO3)2-polydopamine-reduced graphene oxide for high performance electrode in hybrid supercapacitors , 2019, Electrochimica Acta.

[3]  Meilin Liu,et al.  Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors , 2019, Energy Storage Materials.

[4]  Meilin Liu,et al.  "One-for-All" Strategy in Fast Energy Storage: Production of Pillared MOF Nanorod-Templated Positive/Negative Electrodes for the Application of High-Performance Hybrid Supercapacitor. , 2018, Small.

[5]  Chongmin Wang,et al.  Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries , 2018 .

[6]  Song Gao,et al.  MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors , 2018 .

[7]  Faming Gao,et al.  Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor , 2017, Nanotechnology.

[8]  John Wang,et al.  Rational Design of Metal‐Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis , 2017 .

[9]  Meilin Liu,et al.  Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5. , 2017, Journal of the American Chemical Society.

[10]  Krista S. Walton,et al.  Functionalized Bimetallic Hydroxides Derived from Metal–Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability , 2017 .

[11]  X. Lou,et al.  Coordination Polymers Derived General Synthesis of Multishelled Mixed Metal‐Oxide Particles for Hybrid Supercapacitors , 2017, Advanced materials.

[12]  Wei Xia,et al.  High-Performance Energy Storage and Conversion Materials Derived from a Single Metal-Organic Framework/Graphene Aerogel Composite. , 2017, Nano letters.

[13]  Huan Pang,et al.  Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid‐State Electrolyte , 2017 .

[14]  Bo Song,et al.  Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density , 2017 .

[15]  X. Lou,et al.  Formation of Onion‐Like NiCo2S4 Particles via Sequential Ion‐Exchange for Hybrid Supercapacitors , 2017, Advanced materials.

[16]  Zhiqun Lin,et al.  Interconnected Ni(HCO3)2 Hollow Spheres Enabled by Self-Sacrificial Templating with Enhanced Lithium Storage Properties , 2017 .

[17]  Zaiping Guo,et al.  Enhanced Structural Stability of Nickel-Cobalt Hydroxide via Intrinsic Pillar Effect of Metaborate for High-Power and Long-Life Supercapacitor Electrodes. , 2017, Nano letters.

[18]  Meilin Liu,et al.  Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy , 2016 .

[19]  Juan-Yu Yang,et al.  Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors , 2016 .

[20]  Meilin Liu,et al.  Probing Structural Evolution and Charge Storage Mechanism of NiO2Hx Electrode Materials using In Operando Resonance Raman Spectroscopy , 2016, Advanced science.

[21]  R. Mane,et al.  Facile synthesis of manganese carbonate quantum dots/Ni(HCO3)2–MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors , 2015 .

[22]  X. Lou,et al.  Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties , 2015, Nature Communications.

[23]  Alexis T. Bell,et al.  Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity , 2015 .

[24]  Jinqing Wang,et al.  Solvothermal synthesis of Ni(HCO3)2/graphene composites toward supercapacitors and the faradiac redox mechanism in KOH solution , 2013 .

[25]  Yunlong Zhao,et al.  Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance , 2013, Nature Communications.

[26]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[27]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[28]  Yong Ding,et al.  Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy , 2012, Nature Protocols.

[29]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[30]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[31]  W. Lu,et al.  Improved synthesis of graphene oxide. , 2010, ACS nano.

[32]  R. Frost,et al.  Raman spectroscopy of hydroxy nickel carbonate minerals nullaginite and zaratite , 2008 .

[33]  F. Henn,et al.  New Insight into the Vibrational Behavior of Nickel Hydroxide and Oxyhydroxide Using Inelastic Neutron Scattering, Far/Mid-Infrared and Raman Spectroscopies , 2008 .

[34]  C. Delmas,et al.  Investigation of the Second Discharge Plateau of the β ( III ) ‐ NiOOH / β ( II ) ‐ Ni ( OH ) 2 System , 1999 .

[35]  R. Kostecki,et al.  Electrochemical and in situ Raman spectroscopic characterization of nickel hydroxide electrodes : I. Pure nickel hydroxide , 1997 .

[36]  H. Takenouti,et al.  Electrochemical Behavior of Quasi‐Spherical β ‐ Ni ( OH ) 2 Particles Studied by Roman Spectroscopy , 1996 .

[37]  Chenguo Hu,et al.  Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor , 2016 .

[38]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .