Incidence of debris discs around FGK stars in the solar neighbourhood

Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE photometry, were obtained. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the DEBRIS consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars, is complete for F stars, almost complete for G stars and contains a substantial number of K stars to draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type 0.26 (6 objects with excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49 K stars), the fraction for all three spectral types together being 0.22 (23 out of 105 stars). Uncertainties corresponding to a 95% confidence level are given in the text for all these numbers. The medians of the upper limits of L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K); the lowest values being around 4.0E-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.

[1]  S. Wolf,et al.  Herschel observations of the debris disc around HIP 92043 , 2013 .

[2]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[3]  G. Neugebauer,et al.  Infrared standard stars , 1982 .

[4]  R. Wittenmyer,et al.  PURSUING THE PLANET–DEBRIS DISK CONNECTION: ANALYSIS OF UPPER LIMITS FROM THE ANGLO-AUSTRALIAN PLANET SEARCH , 2015, 1501.02508.

[5]  Sallie L. Baliunas,et al.  A Survey of CA II H and K Chromospheric Emission in Southern Solar-Type Stars , 1996 .

[6]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[7]  Astrophysics,et al.  How dusty is alpha Centauri? Excess or non-excess over the infrared photospheres of main-sequence stars , 2014, 1401.6896.

[8]  M. Pinsonneault,et al.  HOW GOOD A CLOCK IS ROTATION? THE STELLAR ROTATION–MASS–AGE RELATIONSHIP FOR OLD FIELD STARS , 2012, 1203.1618.

[9]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[10]  B. S. Carter Southern JHKL standards. , 1990 .

[11]  M. Mermilliod,et al.  $uvby\beta$ photoelectric photometric catalogue , 1998 .

[12]  J. Augereau,et al.  HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK , 2013, 1305.2894.

[13]  S. Udry,et al.  Kuiper belt structure around nearby super-Earth host stars , 2015, 1503.02073.

[14]  R. Massey,et al.  Extragalactic number counts at 100 μm, free from cosmic variance , 2012, 1211.0007.

[15]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[16]  M. C. Wyatt,et al.  Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood , 2009, 0911.3426.

[17]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[18]  K. Fuhrmann Nearby stars of the Galactic disc and halo – IV , 2008 .

[19]  J. Maldonado,et al.  Metallicity of solar-type stars with debris discs and planets , 2012, 1202.5884.

[20]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[21]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[22]  I. Ribas,et al.  DUst around NEarby Stars. The survey observational results , 2013, 1305.0155.

[23]  A. Krivov,et al.  The dust grain size–stellar luminosity trend in debris discs , 2015, 1509.04032.

[24]  W. Soon,et al.  Magnetic Field and Rotation in Lower Main-Sequence Stars: An Empirical Time-Dependent Magnetic Bode's Relation? , 1996 .

[25]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[26]  T. Lohne,et al.  An improved model of the Edgeworth-Kuiper debris disk , 2012, 1202.2257.

[27]  J. Maldonado,et al.  Searching for signatures of planet formation in stars with circumstellar debris discs , 2015, 1502.07100.

[28]  Taylor Francis Online,et al.  The American statistician , 1947 .

[29]  M. Perryman,et al.  The Three-Dimensional Universe with Gaia , 2005 .

[30]  Michael S. Bessell,et al.  UBVRI PHOTOMETRY II: THE COUSINS VRI SYSTEM, ITS TEMPERATURE AND ABSOLUTE FLUX CALIBRATION, AND RELEVANCE FOR TWO-DIMENSIONAL PHOTOMETRY. , 1979 .

[31]  S. Wolf,et al.  HERSCHEL's “COLD DEBRIS DISKS”: BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS? , 2013, 1306.2855.

[32]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[33]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[34]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[35]  Jena,et al.  α Centauri A in the far infrared: First measurement of the temperature minimum of a star other than the Sun , 2012, 1212.3954.

[36]  Andras Gaspar,et al.  THE DECAY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2014, 1402.6308.

[37]  D. Queloz,et al.  The HARPS search for Earth-like planets in the habitable zone - I. Very low-mass planets around HD 20794, HD 85512, and HD 192310 , 2011, 1108.3447.

[38]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[39]  P. Ventura,et al.  A new look at the relationship between activity, dynamo number and Rossby number in late-type stars , 2001 .

[40]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[41]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[42]  P. Kalas,et al.  99 Herculis: host to a circumbinary polar‐ring debris disc , 2012, 1201.1911.

[43]  G. Rieke,et al.  Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems , 2012, 1206.2370.

[44]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[45]  Jeffrey C. Hall,et al.  The Activity and Variability of the Sun and Sun-like Stars. I. Synoptic Ca II H and K Observations , 2007 .

[46]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[47]  Stephan D. Price,et al.  The Tycho-2 Spectral Type Catalog , 2003 .

[48]  Z. Balog,et al.  THE COLLISIONAL EVOLUTION OF DEBRIS DISKS , 2012, 1211.1415.

[49]  F. J. Low,et al.  DISCOVERY OF A SHELL AROUND ALPHA-LYRAE , 1984 .

[50]  O. C. Wilson,et al.  Ca II H and K measurements made at Mount Wilson Observatory, 1966-1983 , 1991 .

[51]  R. P. Butler,et al.  A SUPER-EARTH AND TWO NEPTUNES ORBITING THE NEARBY SUN-LIKE STAR 61 VIRGINIS , 2009, 0912.2599.

[52]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[53]  Markus Nielbock,et al.  The Herschel-PACS photometer calibration , 2013, Experimental Astronomy.

[54]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[55]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[56]  G. Torres ON THE USE OF EMPIRICAL BOLOMETRIC CORRECTIONS FOR STARS , 2010, 1008.3913.

[57]  J. Maldonado,et al.  DOES THE PRESENCE OF PLANETS AFFECT THE FREQUENCY AND PROPERTIES OF EXTRASOLAR KUIPER BELTS? RESULTS FROM THE HERSCHEL DEBRIS AND DUNES SURVEYS , 2015, 1501.03813.

[58]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[59]  Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I. , 2003, astro-ph/0308182.

[60]  S. Meibom,et al.  A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster , 2015, Nature.

[61]  S. Wolf,et al.  A peculiar class of debris disks from Herschel /DUNES , 2012, 1203.6784.

[62]  N. C. Santos,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003 .

[63]  Amsterdam,et al.  The age dependence of the Vega phenomenon: Observations , 2003, astro-ph/0308294.

[64]  G. Preston,et al.  A SURVEY OF CHROMOSPHERIC CA II H AND K EMISSION IN FIELD STARS OF THE SOLAR NEIGHBORHOOD. , 1980 .

[65]  E. Villaver,et al.  Long-term evolution of three-planet systems to the post-main sequence and beyond , 2013, 1310.3168.

[66]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[67]  J. Blommaert,et al.  The debris disc of solar analogue   Ceti: Herschel observations and dynamical simulations of the proposed multiplanet system , 2014, Monthly Notices of the Royal Astronomical Society.

[68]  Marc J. Kuchner,et al.  THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS , 2014 .

[69]  S. Wolf,et al.  Herschel discovery of a new class of cold, faint debris discs , 2011, 1110.4826.

[70]  J. Maldonado,et al.  Correlations between the stellar, planetary, and debris components of exoplanet systems observed byHerschel , 2014, Astronomy &amp; Astrophysics.

[71]  D. Fischer,et al.  Metallicity, debris discs and planets , 2006 .

[72]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[73]  B. Sato,et al.  Spectroscopic Study on the Atmospheric Parameters of Nearby F-K Dwarfs and Subgiants , 2005 .

[74]  J. Wisniewski,et al.  SPATIALLY RESOLVED IMAGING OF THE TWO-COMPONENT η Crv DEBRIS DISK WITH HERSCHEL , 2014, 1402.1184.

[75]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[76]  H. Aumann,et al.  Search for Vega-like nearby stars with 12 micron excess , 1991 .

[77]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[78]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[79]  Universidad Complutense de Madrid,et al.  Chromospheric activity and rotation of FGK stars in the solar vicinity - An estimation of the radial velocity jitter , 2010, 1002.4391.

[80]  The Absolute Flux Calibration of Strömgren UVBY Photometry , 1998 .

[81]  C. Saffe,et al.  On the ages of exoplanet host stars , 2005, astro-ph/0510092.

[82]  R. Laureijs,et al.  Incidence and survival of remnant disks around main-sequence stars , 2000, astro-ph/0011137.

[83]  R. Rebolo,et al.  Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators , 2015, 1506.08039.

[84]  I. Glass Intermediate infrared colours of M-dwarf stars. , 1975 .