BAMBI: An R Package for Fitting Bivariate Angular Mixture Models

[1]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[2]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[3]  M. Plummer Penalized loss functions for Bayesian model comparison. , 2008, Biostatistics.

[4]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[5]  D. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[6]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[7]  Jesper Ferkinghoff-Borg,et al.  A generative, probabilistic model of local protein structure , 2008, Proceedings of the National Academy of Sciences.

[8]  Harshinder Singh,et al.  Probabilistic model for two dependent circular variables , 2002 .

[9]  N. Fisher,et al.  A correlation coefficient for circular data , 1983 .

[10]  A. Gelman,et al.  Pareto Smoothed Importance Sampling , 2015, 1507.02646.

[11]  J. Hobert,et al.  A spectral analytic comparison of trace-class data augmentation algorithms and their sandwich variants , 2011, 1202.5205.

[12]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[13]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[14]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[15]  Aki Vehtari,et al.  Very Good Importance Sampling , 2015 .

[16]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[17]  P. Sprent,et al.  Statistical Analysis of Circular Data. , 1994 .

[18]  Gerhard Kurz,et al.  Parameter estimation for the bivariate wrapped normal distribution , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[19]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[20]  H. Akaike A new look at the statistical model identification , 1974 .

[21]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[22]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[23]  Thomas Hamelryck,et al.  Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks , 2009, BMC Bioinformatics.

[24]  David S. Leslie,et al.  A tutorial on bridge sampling , 2017, Journal of mathematical psychology.

[25]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[26]  Adrian E. Raftery,et al.  mclust Version 4 for R : Normal Mixture Modeling for Model-Based Clustering , Classification , and Density Estimation , 2012 .

[27]  N. Fisher,et al.  Efficient Simulation of the von Mises Distribution , 1979 .

[28]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[29]  K. Mardia,et al.  Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data , 2007, Biometrics.

[30]  Radford M. Neal Priors for Infinite Networks , 1996 .

[31]  Samuel W. K. Wong,et al.  On the circular correlation coefficients for bivariate von Mises distributions on a torus , 2018, Statistical Papers.

[32]  Xiao-Li Meng,et al.  Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .

[33]  Gert Vriend,et al.  A series of PDB related databases for everyday needs , 2010, Nucleic Acids Res..

[34]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[35]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[36]  K. Mardia Statistics of Directional Data , 1972 .

[37]  Henrik Singmann,et al.  bridgesampling: An R Package for Estimating Normalizing Constants , 2017, Journal of Statistical Software.

[38]  Christiane Lemieux,et al.  New Perspectives on (0,s)-Sequences , 2009 .

[39]  Xiao-Li Meng,et al.  Warp Bridge Sampling , 2002 .

[40]  Debswapna Bhattacharya,et al.  De novo protein conformational sampling using a probabilistic graphical model , 2015, Scientific Reports.

[41]  Stephen G. Walker,et al.  Label Switching in Bayesian Mixture Models: Deterministic Relabeling Strategies , 2014 .

[42]  Sylvia Frühwirth-Schnatter,et al.  Dealing with Label Switching under Model Uncertainty , 2011 .

[43]  K. P. Lennox,et al.  Density Estimation for Protein Conformation Angles Using a Bivariate von Mises Distribution and Bayesian Nonparametrics , 2009, Journal of the American Statistical Association.

[44]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[46]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[47]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[48]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[49]  Cristina Rueda,et al.  isocir: An R Package for Constrained Inference using Isotonic Regression for Circular Data, with an Application to Cell Biology. , 2013, Journal of statistical software.

[50]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[51]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[52]  S. Frühwirth-Schnatter Markov chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models , 2001 .

[53]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[54]  Jirí Grim,et al.  Approximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial , 2017, Int. J. Pattern Recognit. Artif. Intell..

[55]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[56]  K. Mengersen,et al.  Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .

[57]  Tiefeng Ma,et al.  On circular correlation for data on the torus , 2019 .

[58]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[59]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[60]  Louis-Paul Rivest,et al.  A distribution for dependent unit vectors , 1988 .

[61]  Sumio Watanabe,et al.  A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..

[62]  M. Stephens Dealing with label switching in mixture models , 2000 .

[63]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[64]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[65]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[66]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[67]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[68]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[69]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[70]  Paul B. Mackenze An Improved Hybrid Monte Carlo Method , 1989 .

[71]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[72]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[73]  Panagiotis Papastamoulis,et al.  label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs , 2015, 1503.02271.

[74]  Giovanna Jona-Lasinio,et al.  Spatial analysis of wave direction data using wrapped Gaussian processes , 2012, 1301.1446.

[75]  C. Robert,et al.  Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modeling , 2009, 0911.4546.

[76]  Yaming Yu,et al.  To Center or Not to Center: That Is Not the Question—An Ancillarity–Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency , 2011 .

[77]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .