Negative Quasi-Probability in the Context of Quantum Computation

This thesis deals with the question of what resources are necessary and sufficient for quantum computational speedup. In particular, we study what resources are required to promote fault tolerant stabilizer computation to universal quantum computation. In this context we discover a remarkable connection between the possibility of quantum computational speedup and negativity in the discrete Wigner function, which is a particular distinguished quasi-probability representation for quantum theory. This connection allows us to establish a number of important results related to magic state computation, an important model for fault tolerant quantum computation using stabilizer operations supplemented by the ability to prepare noisy non-stabilizer ancilla states. In particular, we resolve in the negative the open problem of whether every non-stabilizer resource suffices to promote computation with stabilizer operations to universal quantum computation. Moreover, by casting magic state computation as resource theory we are able to quantify how useful ancilla resource states are for quantum computation, which allows us to give bounds on the required resources. In this context we discover that the sum of the negative entries of the discrete Wigner representation of a state is a measure of its usefulness for quantum computation. This gives a precise, quantitative meaning to the negativity of a quasi-probability representation, thereby resolving the 80 year debate as to whether this quantity is a meaningful indicator of quantum behaviour. We believe that the techniques we develop here will be widely applicable in quantum theory, particularly in the context of resource theories.

[1]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[2]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[3]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[4]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[5]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[6]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[7]  Nathan Wiebe,et al.  Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.

[8]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[9]  Earl T. Campbell,et al.  On the Structure of Protocols for Magic State Distillation , 2009, TCQ.

[10]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[11]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[12]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[13]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  Necessity of negativity in quantum theory , 2009, 0910.3198.

[16]  Austin G. Fowler,et al.  A primer on surface codes: Developing a machine language for a quantum computer , 2012 .

[17]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[18]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[19]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[20]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[21]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[22]  G. Ziegler Lectures on Polytopes , 1994 .

[23]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[25]  Stephen D. Bartlett,et al.  Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.

[26]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[27]  Ben Reichardt Error-Detection-Based Quantum Fault-Tolerance Threshold , 2007, Algorithmica.

[28]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[29]  Daniel Gottesman,et al.  Classicality in discrete Wigner functions , 2005, quant-ph/0506222.

[30]  Andrew W. Cross,et al.  Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.

[31]  D. Browne,et al.  Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.

[32]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[33]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[34]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[35]  David Gross,et al.  Non-negative Wigner functions in prime dimensions , 2007 .

[36]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[37]  S. Virmani,et al.  Generalized state spaces and nonlocality in fault-tolerant quantum-computing schemes , 2010, 1007.3455.

[38]  G. Folland Harmonic analysis in phase space , 1989 .

[39]  David Gross,et al.  Computational power of quantum many-body states and some results on discrete phase spaces , 2008 .

[40]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[41]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[42]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[43]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[44]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[45]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[46]  Daniel Gottesman Quantum Error Correction and Fault-Tolerance , 2005 .

[47]  M. Piani Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.

[48]  Mark Howard,et al.  Tight noise thresholds for quantum computation with perfect stabilizer operations. , 2009, Physical review letters.

[49]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[50]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[51]  Cody Jones,et al.  Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..

[52]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[53]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[54]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[55]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[56]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[57]  E. Galvão Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.

[58]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[59]  Jonathan Oppenheim,et al.  Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.

[60]  Ben Reichardt,et al.  Quantum universality by state distillation , 2006, Quantum Inf. Comput..

[61]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[62]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[63]  E. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[64]  Earl T. Campbell,et al.  Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.

[65]  A. Peres All the Bell Inequalities , 1998, quant-ph/9807017.

[66]  Michal Horodecki,et al.  LETTER TO THE EDITOR: On asymptotic continuity of functions of quantum states , 2005 .

[67]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[68]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[69]  Wim van Dam,et al.  Noise thresholds for higher-dimensional systems using the discrete Wigner function , 2010, 1011.2497.

[70]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[71]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[72]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[73]  David Marcus Appleby,et al.  Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.

[74]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[75]  F. Brandão,et al.  A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.