Negative Quasi-Probability in the Context of Quantum Computation
暂无分享,去创建一个
[1] L. Mandel. Non-Classical States of the Electromagnetic Field , 1986 .
[2] J Eisert,et al. Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.
[3] Joseph Emerson,et al. Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.
[4] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[5] Christopher Ferrie,et al. Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.
[6] R. Spekkens,et al. The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.
[7] Nathan Wiebe,et al. Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.
[8] M. Plenio. Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.
[9] Earl T. Campbell,et al. On the Structure of Protocols for Magic State Distillation , 2009, TCQ.
[10] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .
[11] Victor Veitch,et al. The resource theory of stabilizer quantum computation , 2013, 1307.7171.
[12] Ben Reichardt,et al. Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..
[13] A. Datta,et al. Entanglement and the power of one qubit , 2005, quant-ph/0505213.
[14] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[15] Necessity of negativity in quantum theory , 2009, 0910.3198.
[16] Austin G. Fowler,et al. A primer on surface codes: Developing a machine language for a quantum computer , 2012 .
[17] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[18] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[19] M. Horodecki,et al. QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.
[20] K. Życzkowski,et al. Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.
[21] M. Horodecki,et al. Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.
[22] G. Ziegler. Lectures on Polytopes , 1994 .
[23] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[24] D. Browne,et al. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.
[25] Stephen D. Bartlett,et al. Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.
[26] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[27] Ben Reichardt. Error-Detection-Based Quantum Fault-Tolerance Threshold , 2007, Algorithmica.
[28] Christopher Ferrie,et al. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.
[29] Daniel Gottesman,et al. Classicality in discrete Wigner functions , 2005, quant-ph/0506222.
[30] Andrew W. Cross,et al. Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit , 2008, 0801.2360.
[31] D. Browne,et al. Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.
[32] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[33] D. Gross,et al. Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.
[34] M. Freedman,et al. Topological Quantum Computation , 2001, quant-ph/0101025.
[35] David Gross,et al. Non-negative Wigner functions in prime dimensions , 2007 .
[36] D. Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.
[37] S. Virmani,et al. Generalized state spaces and nonlocality in fault-tolerant quantum-computing schemes , 2010, 1007.3455.
[38] G. Folland. Harmonic analysis in phase space , 1989 .
[39] David Gross,et al. Computational power of quantum many-body states and some results on discrete phase spaces , 2008 .
[40] Robert W Spekkens,et al. Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.
[41] W. Wootters. A Wigner-function formulation of finite-state quantum mechanics , 1987 .
[42] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[43] D. Browne,et al. Qutrit magic state distillation , 2012, 1202.2326.
[44] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[45] R. Spekkens,et al. Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.
[46] Daniel Gottesman. Quantum Error Correction and Fault-Tolerance , 2005 .
[47] M. Piani. Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.
[48] Mark Howard,et al. Tight noise thresholds for quantum computation with perfect stabilizer operations. , 2009, Physical review letters.
[49] S. Bravyi,et al. Magic-state distillation with low overhead , 2012, 1209.2426.
[50] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[51] Cody Jones,et al. Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..
[52] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[53] Andrew W. Cross,et al. Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.
[54] A. Kitaev. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[55] D. Gross. Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.
[56] Bryan Eastin,et al. Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.
[57] E. Galvão. Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.
[58] R. Baierlein. Probability Theory: The Logic of Science , 2004 .
[59] Jonathan Oppenheim,et al. Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.
[60] Ben Reichardt,et al. Quantum universality by state distillation , 2006, Quantum Inf. Comput..
[61] Discrete phase space based on finite fields , 2004, quant-ph/0401155.
[62] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[63] E. Lieb,et al. A Fundamental Property of Quantum-Mechanical Entropy , 1973 .
[64] Earl T. Campbell,et al. Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.
[65] A. Peres. All the Bell Inequalities , 1998, quant-ph/9807017.
[66] Michal Horodecki,et al. LETTER TO THE EDITOR: On asymptotic continuity of functions of quantum states , 2005 .
[67] V. Vedral,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[68] E. Knill,et al. Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.
[69] Wim van Dam,et al. Noise thresholds for higher-dimensional systems using the discrete Wigner function , 2010, 1011.2497.
[70] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[71] D. Gottesman. The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.
[72] Mark Howard,et al. Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.
[73] David Marcus Appleby,et al. Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.
[74] Bryan Eastin,et al. Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.
[75] F. Brandão,et al. A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.