Tagging Jets in Invisible Higgs Searches

Searches for invisible Higgs decays in weak boson fusion are a well-known laboratory for jets and QCD studies. We present a series of results on tagging jets and central jet activity. First, precision analyses of the central jet activity require full control of single top production in some analyses. Second, the rate dependence on the size of the tagging jets is not limited to weak boson fusion. For the first time, we show how subjet information on the tagging jets and on the additional jet activity can be used to extract the Higgs signal. The additional observables relieve some of the pressure on other, critical observables. Finally, we compare the performance of weak boson fusion and associated Higgs production.

[1]  G. Salam,et al.  Energy correlation functions for jet substructure , 2013, 1305.0007.

[2]  M. Spannowsky,et al.  Spectroscopy of Scalar Mediators to Dark Matter at the LHC and at 100 TeV , 2015, 1505.03019.

[3]  G. Sterman,et al.  Event shape / energy flow correlations , 2003, hep-ph/0303051.

[4]  J. Pumplin,et al.  How to tell quark jets from gluon jets. , 1991, Physical review. D, Particles and fields.

[5]  P. W. Higgs Broken symmetries, massless particles and gauge fields , 1964 .

[6]  K. Griest,et al.  Invisible decays of Higgs bosons in supersymmetric models. , 1988, Physical review. D, Particles and fields.

[7]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[8]  D. Rainwater,et al.  Probing color-singlet exchange in Z+2-jet events at the CERN LHC. , 1996, Physical review. D, Particles and fields.

[9]  M. Buckley,et al.  Constraining the strength andCPstructure of dark production at the LHC: The associated top-pair channel , 2015, 1511.06451.

[10]  F. Ringer,et al.  The energy distribution of subjets and the jet shape , 2017, Journal of High Energy Physics.

[11]  Patrick T. Komiske,et al.  Deep learning in color: towards automated quark/gluon jet discrimination , 2016, Journal of High Energy Physics.

[12]  D. Zeppenfeld,et al.  Jet clustering dependence of Higgs boson production in vector-boson fusion , 2017 .

[13]  J. Shelton,et al.  Measuring the invisible Higgs width at the 7 and 8 TeV LHC , 2011, 1112.4496.

[14]  Atlas Collaboration Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector , 2015, 1509.00672.

[15]  S. Schumann,et al.  Understanding jet scaling and jet vetos in Higgs searches. , 2011, Physical review letters.

[16]  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[17]  T. Tuuva,et al.  Searches for invisible decays of the Higgs boson in pp collisions at s$$ \sqrt{s} $$ = 7, 8, and 13 TeV , 2017 .

[18]  D. Zerwas,et al.  LHC: Standard Higgs and hidden Higgs , 2011, 1112.3007.

[19]  A. Pilkington,et al.  Extracting Higgs boson couplings using a jet veto A. Pilkington , 2010, 1006.0986.

[20]  Lian-tao Wang,et al.  Exploring the Higgs portal with 10 fb−1 at the LHC , 2011, 1112.5180.

[21]  D. Rathlev,et al.  W+ W- production at hadron colliders in next to next to leading order QCD. , 2014, Physical review letters.

[22]  A. Denner,et al.  Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.

[23]  Search for `invisible' Higgs signals at LHC via associated production with gauge bosons , 2003, hep-ph/0304137.

[24]  Lorenzo Moneta,et al.  ROOT - A C++ framework for petabyte data storage, statistical analysis and visualization , 2011, Comput. Phys. Commun..

[25]  U. Ellwanger,et al.  Status of invisible Higgs decays , 2013, 1302.5694.

[26]  S. Baek,et al.  Invisible Higgs Decay Width vs. Dark Matter Direct Detection Cross Section in Higgs Portal Dark Matter Models , 2014, 1405.3530.

[27]  M. Guchait,et al.  Looking for an Invisible Higgs Signal at the LHC , 2012, 1211.7015.

[28]  M. Schwartz,et al.  Jet charge at the LHC. , 2012, Physical review letters.

[29]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[30]  Mirror World at the Large Hadron Collider , 2005, hep-ph/0509242.

[31]  Cosmological constraints on an invisibly decaying Higgs , 2001, hep-ph/0103340.

[32]  T. Gleisberg,et al.  Comix, a new matrix element generator , 2008, 0808.3674.

[33]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[34]  Lukasz Zwalinski,et al.  Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS , 2014, 1402.3244.

[35]  Scoap,et al.  Muon reconstruction performance of the ATLAS detector in proton–proton collision data at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} , 2016, The European Physical Journal C.

[36]  F. Tegenfeldt,et al.  TMVA - Toolkit for multivariate data analysis , 2012 .

[37]  Tilman Plehn,et al.  The gauge-Higgs legacy of the LHC Run I , 2016 .

[38]  Andreas van Hameren,et al.  OneLOop: For the evaluation of one-loop scalar functions , 2010, Comput. Phys. Commun..

[39]  S. Henrot-Versillé,et al.  Linking the Galactic Center excess to invisible Higgs boson decays in the NMSSM , 2016 .

[40]  Jong Soo Kim,et al.  CheckMATE 2: From the model to the limit , 2016, Comput. Phys. Commun..

[41]  C. Collaboration,et al.  Searches for invisible decays of the Higgs boson in pp collisions at sqrt(s) = 7, 8, and 13 TeV , 2016, 1610.09218.

[42]  D. Rathlev,et al.  ZZ production at hadron colliders in NNLO QCD , 2014, 1604.08576.

[43]  Abdelhak Djouadi,et al.  Implications of LHC searches for Higgs-portal dark matter , 2011, 1112.3299.

[44]  Improving Higgs plus Jets analyses through Fox{Wolfram Moments , 2013, 1311.5891.

[45]  C. Jessop,et al.  Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes , 2014, The European physical journal. C, Particles and fields.

[46]  M. Tytgat,et al.  A light scalar WIMP through the Higgs portal , 2010 .

[47]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[48]  M. Cacciari,et al.  Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.

[49]  F. Wilczek,et al.  Higgs-field portal into hidden sectors , 2006, hep-ph/0605188.

[50]  B. Bhattacherjee,et al.  Invisible decay of the Higgs boson in the context of a thermal and nonthermal relic in MSSM , 2017, 1703.03838.

[51]  E. Lipeles,et al.  Prospects on the search for invisible Higgs decays in the ZH channel at the LHC and HL-LHC: A Snowmass White Paper , 2013, 1309.7925.

[52]  R. Kleiss,et al.  Tagging the Higgs , 1988 .

[53]  A. Denner,et al.  Scalar one-loop 4-point integrals , 2010, 1005.2076.

[54]  Y. Liu,et al.  HIDDEN HIGGS PARTICLES , 1985 .

[55]  A. Read Presentation of search results: the CLs technique , 2002 .

[56]  F. Krauss,et al.  QCD Matrix Elements + Parton Showers , 2001, hep-ph/0109231.

[57]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[58]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[59]  D. Choudhury,et al.  Signatures of an invisibly decaying Higgs particle at LHC , 1993, hep-ph/9312347.

[60]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[61]  Ansgar Denner,et al.  Collier: A fortran-based complex one-loop library in extended regularizations , 2016, Comput. Phys. Commun..

[62]  G. R. Lee,et al.  Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $Z$ boson in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector , 2017, 1708.09624.

[63]  J. Tandean,et al.  Hidden Higgs Boson at the LHC and Light Dark Matter Searches , 2011, 1109.1277.

[64]  A. Butter,et al.  Fox-Wolfram Moments in Higgs Physics , 2012, 1212.4436.

[65]  Atlas Collaboration Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS , 2014, 1402.3244.

[66]  M. Schwartz,et al.  Quark and gluon tagging at the LHC. , 2011, Physical review letters.

[67]  F. Ling,et al.  Light scalar WIMP through the Higgs portal and CoGeNT , 2010, 1003.2595.

[68]  Pedro Antonio Gutiérrez,et al.  Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector , 2015, Journal of High Energy Physics.

[69]  B. Webber,et al.  Jet broadening measures in e + e - annihilation , 1992 .

[70]  H. S. Bansil,et al.  Search for invisible decays of a Higgs boson using vector-boson fusion in pp collisions at s=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{- , 2015, Journal of High Energy Physics.

[71]  P. W. Higgs Spontaneous Symmetry Breakdown without Massless Bosons , 1966 .

[72]  C. Wagner,et al.  Dark side of the Higgs boson , 2011, 1110.4405.

[73]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[74]  Michal Czakon,et al.  Top++: A program for the calculation of the top-pair cross-section at hadron colliders , 2011, Comput. Phys. Commun..

[75]  P. Catastini,et al.  Search for invisible decays of the Higgs boson produced in association with a hadronically decaying vector boson in pp collisions at $$\sqrt{s} = 8$$s=8 TeV with the ATLAS detector , 2015 .

[76]  T. Plehn,et al.  Spying an invisible Higgs boson , 2014, 1411.7699.

[77]  M. Pospelov,et al.  Higgs decays to dark matter: Beyond the minimal model , 2011, 1109.4872.

[78]  S. Meola,et al.  Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider , 2008 .

[79]  T. Plehn,et al.  The Higgs legacy of the LHC Run I , 2015, 1505.05516.

[80]  U. Baur,et al.  Tagging the Higgs boson in pp→ W+W−jj processes , 1990 .

[81]  James D. Wells,et al.  Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN Large Hadron Collider , 2005 .

[82]  D. Rathlev,et al.  W+W− production at the LHC: fiducial cross sections and distributions in NNLO QCD , 2015, 1507.06257.

[83]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[84]  D. Zeppenfeld,et al.  Observing an invisible Higgs boson , 2000 .

[85]  F Cascioli,et al.  Scattering amplitudes with open loops. , 2011, Physical review letters.

[86]  Mcdonald Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[87]  M. P. Casado,et al.  Muon reconstruction performance of the ATLAS detector in proton–proton collision data at s =13 TeV , 2016, 1603.05598.

[88]  T. Plehn,et al.  Weak boson fusion at 100 TeV , 2017, 1702.05098.

[89]  Tilman Plehn,et al.  Exploring the Higgs portal , 2011, 1106.3097.

[90]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[91]  Robert Shrock,et al.  Invisible decays of Higgs bosons , 1982 .

[92]  Cheung,et al.  Comparative study of the benefits of forward jet tagging in heavy-Higgs-boson production at the Superconducting Super Collider. , 1991, Physical review. D, Particles and fields.

[93]  Brian Batell,et al.  Invisible decays in Higgs boson pair production , 2016, 1608.08601.

[94]  O. Bertolami,et al.  THE HIGGS PORTAL AND AN UNIFIED MODEL FOR DARK ENERGY AND DARK MATTER , 2007, 0708.1784.