An Efficient High-Power Fundamental Oscillator Above $f_{\max }/2$ : A Systematic Design

A novel approach to design efficient high-output-power fundamental oscillators beyond <inline-formula> <tex-math notation="LaTeX">$f_{\max }/2$ </tex-math></inline-formula> of the employed process is presented. The idea is to shape and maximize the unilateral power gain (<inline-formula> <tex-math notation="LaTeX">$U$ </tex-math></inline-formula>) of the network at the desired frequency using optimum passive internal and external feedback networks. The proposed technique significantly improves the output power and dc-to-RF efficiency of the oscillator. To show the feasibility of this novel approach, a 175 GHz fundamental oscillator is designed in a 130 nm SiGe BiCMOS process (<inline-formula> <tex-math notation="LaTeX">$f_{\max }\simeq ~280$ </tex-math></inline-formula> GHz), which achieves a measured dc-to-RF efficiency of 11.7% that is markedly higher than all reported oscillators above <inline-formula> <tex-math notation="LaTeX">$f_{\max }/3$ </tex-math></inline-formula> of their active device. Measurements show that the designed oscillator generates a peak power of 3 mW (4.8 dBm) with a phase noise figure of merit (FoM) of −195.4 dBc/Hz at 1 MHz offset frequency, which is the highest phase noise FoM among all reported CMOS/BiCMOS millimeter-wave and terahertz oscillators. The proposed method considers the possible process, voltage, temperature variations as well as modeling errors of the passive components in the design stage.

[1]  K. Johnson Large Signal GaAs MESFET Oscillator Design , 1979 .

[2]  Ehsan Afshari,et al.  A Broadband mm-Wave and Terahertz Traveling-Wave Frequency Multiplier on CMOS , 2011, IEEE Journal of Solid-State Circuits.

[3]  Chih-Ming Hung,et al.  A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  J. Scanlan,et al.  A linear theory of 3-pole oscillators , 1963 .

[5]  C. Otani,et al.  Terahertz imaging diagnostics of the cancer tissues with chemometrics technique , 2007, 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics.

[6]  H. Rowe,et al.  Some General Properties of Nonlinear Elements-Part I. General Energy Relations , 1956, Proceedings of the IRE.

[7]  Joy Laskar,et al.  A High-Efficiency, High-Power Millimeter-Wave Oscillator Using a Feedback Class-E Power Amplifier in 45 nm CMOS , 2011, IEEE Microwave and Wireless Components Letters.

[8]  H. Quast,et al.  Towards real-time active THz range imaging for security applications , 2009, 2009 International Conference on Electromagnetics in Advanced Applications.

[9]  K. L. Kotzebue Maximally efficient gain: a figure of merit for linear active 2-ports , 1976 .

[10]  A. Thiede,et al.  Low power fundamental VCO design in D-band using 0.13 µm SiGe BiCMOS technology , 2015, 2015 German Microwave Conference.

[11]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[12]  Y. Baeyens,et al.  A monolithic integrated 180 GHz SiGe HBT push-push oscillator , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[13]  E. Dacquay,et al.  Scaling of SiGe BiCMOS Technologies for Applications above 100 GHz , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[14]  H. Gomes,et al.  Software tool to aid the definition of protection zones of Non-Ionizing radiating in UHF range , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[15]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[16]  Ehsan Afshari,et al.  14.8 A 247-to-263.5GHz VCO with 2.6mW peak output power and 1.14% DC-to-RF efficiency in 65nm Bulk CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[17]  Huei Wang,et al.  A Low-Power 114-GHz Push–Push CMOS VCO Using LC Source Degeneration , 2007, IEEE Journal of Solid-State Circuits.

[18]  E. Seok,et al.  192 GHz push–push VCO in 0.13 [micro sign]m CMOS , 2006 .

[19]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[20]  E. Socher,et al.  A 234–248 GHz power efficient fundamental VCO using 32 nm CMOS SOI technology , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[21]  E. Linfield,et al.  Terahertz Pulsed Imaging of Skin Cancer in the Time and Frequency Domain , 2003, Journal of biological physics.

[22]  Tadao Nagatsuma,et al.  8 Gbit/s wireless data transmission at 250 GHz , 2009 .

[23]  Yuji Yamamoto,et al.  A 0.13µm SiGe BiCMOS technology featuring fT/fmax of 240/330 GHz and gate delays below 3 ps , 2010, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[24]  P. Siegel Terahertz technology in biology and medicine , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[25]  Gabriel M. Rebeiz,et al.  Oscillator design for maximum added power , 1994, IEEE Microwave and Guided Wave Letters.

[26]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[27]  Nachappa Gopalsami,et al.  Millimeter-wave radar sensing of airborne chemicals , 2001 .

[28]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[29]  Ehsan Afshari,et al.  A 105-GHz VCO With 9.5% Tuning Range and 2.8-mW Peak Output Power in a 65-nm Bulk CMOS Process , 2014, IEEE Transactions on Microwave Theory and Techniques.

[30]  S. Power Gain in Feedback Amplifiers , a Classic Revisited , 2022 .

[31]  Ho-Jin Song,et al.  50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz , 2014, IEEE Transactions on Microwave Theory and Techniques.

[32]  Bernd Heinemann,et al.  Fundamental mode colpitts VCOs at 115 and 165-GHz , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[33]  P. Chevalier,et al.  80/160-GHz Transceiver and 140-GHz Amplifier in SiGe Technology , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[34]  Naima Kaabouch,et al.  Investigation of biological effects associated with Terahertz radiation , 2012, 2012 IEEE International Conference on Electro/Information Technology.

[35]  Ehsan Afshari,et al.  A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation , 2012, IEEE Journal of Solid-State Circuits.

[36]  Payam Heydari,et al.  A 200-GHz Inductively Tuned VCO With $-$7-dBm Output Power in 130-nm SiGe BiCMOS , 2013, IEEE Transactions on Microwave Theory and Techniques.

[37]  A. Boothroyd,et al.  Instability in Two-Port Active Networks , 1958 .

[38]  Roland Longchamp,et al.  Fixed-Order Controller Design for Polytopic Systems Using LMIs , 2008, IEEE Transactions on Automatic Control.

[39]  S. Mason Power Gain in Feedback Amplifier , 1954 .

[40]  P.-O. Leine On the Power Gain of Unilaterized Active Networks , 1961 .

[42]  F. Rosenbaum,et al.  An Analytic Approach to Optimum Oscillator Design Using S-Parameters , 1983 .

[43]  Kaushik Sengupta,et al.  A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators , 2012, IEEE Journal of Solid-State Circuits.

[44]  M. Vehovec,et al.  On Oscillator Design for Maximum Power , 1968 .

[45]  R. Spence A Theory of Maximally Loaded Oscillators , 1966 .

[46]  Yao Jianquan,et al.  Review of explosive detection using terahertz spectroscopy technique , 2011, Proceedings of 2011 International Conference on Electronics and Optoelectronics.

[47]  Ehsan Afshari,et al.  A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy , 2013, IEEE Journal of Solid-State Circuits.

[48]  Hua Zhong,et al.  Terahertz Spectroscopy and Imaging for Defense and Security Applications , 2007, Proceedings of the IEEE.

[49]  Hong-Yeh Chang,et al.  A 98/196 GHz Low Phase Noise Voltage Controlled Oscillator With a Mode Selector Using a 90 nm CMOS Process , 2009, IEEE Microwave and Wireless Components Letters.

[50]  Hong-Yeh Chang,et al.  A 131 GHz push-push VCO in 90-nm CMOS technology , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[51]  Ali M. Niknejad,et al.  Electromagnetics for High-Speed Analog and Digital Communication Circuits: Preface , 2007 .

[52]  K. L. Kotzebue,et al.  A Technique for the Design of Microwave Transistor Oscillators (Short Paper) , 1984 .

[53]  Jian Zhang,et al.  A 10-Gbit/s Wireless Communication Link Using 16-QAM Modulation in 140-GHz Band , 2013, IEEE Transactions on Microwave Theory and Techniques.

[54]  Yan Zhao,et al.  A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology , 2013, IEEE Journal of Solid-State Circuits.

[55]  M.C.E. Yagoub,et al.  Nonlinear oscillator design for maximum power , 1994, Proceedings of IEEE 48th Annual Symposium on Frequency Control.

[56]  K.F. Tsang,et al.  An optimum design of Class-C power oscillator using large-signal S-parameters , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[57]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .