Mitochondrial genome evolution in the social amoebae.

Most mitochondria contain a core set of genes required for mitochondrial function, but beyond this base there are variable genomic features. The mitochondrial genome of the model species Dictyostelium discoideum demonstrated that the social amoebae mitochondrial genomes have a size between those of metazoans and plants, but no comparative study of social amoebae mitochondria has been performed. Here, we present a comparative analysis of social amoebae mitochondrial genomes using D. discoideum, Dictyostelium citrinum, Dictyostelium fasciculatum, and Polysphondylium pallidum. The social amoebae mitochondria have similar sizes, AT content, gene content and have a high level of synteny except for one segmental rearrangement and extensive displacement of tRNAs. From the species that contain the rearrangement, it can be concluded that the event occurred late in the evolution of social amoebae. A phylogeny using 36 mitochondrial genes produced a well-supported tree suggesting that the pairs of D. discoideum/D. citrinum and D. fasciculatum/P. pallidum are sister species although the position of the root is not certain. Group I introns and endonucleases are variable in number and location in the social amoebae. Phylogenies of the introns and endonucleases suggest that there have been multiple recent duplications or extinctions and confirm that endonucleases have the ability to insert into new areas. An analysis of dN/dS ratios in mitochondrial genes revealed that among groups of genes, adenosine triphosphate synthase complex genes have the highest ratio, whereas cytochrome oxidase and nicotinamide adenine dinucleotide (NADH) dehydrogenase genes had the lowest ratio. The genetic codes of D. citrinum, P. pallidum, and D. fasciculatum are the universal code although D. fasciculatum does not use the TGA stop codon. In D. fasciculatum, we demonstrate for the first time that a mitochondrial genome without the TGA stop codon still uses the release factor RF2 that recognizes TGA. Theories of how the genetic code can change and why RF2 may be a constraint against switching codes are discussed.

[1]  K. Williams,et al.  The Dictyostelium discoideum mitochondrial genome: A primordial system using the universal code and encoding hydrophilic proteins atypical of metazoan mitochondrial DNA , 1994, Journal of Molecular Evolution.

[2]  Thomas Winckler,et al.  Molecular Phylogeny and Evolution of Morphology in the Social Amoebas , 2006, Science.

[3]  D. McManus,et al.  A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes , 2006, Parasitology.

[4]  H. Jacobs,et al.  Human mtDNA sublimons resemble rearranged mitochondrial genoms found in pathological states. , 2000, Human molecular genetics.

[5]  Isolation of a rat mitochondrial release factor. Accommodation of the changed genetic code for termination. , 1987, The Journal of biological chemistry.

[6]  Y. Sekine,et al.  The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. , 2006, Molecular biology and evolution.

[7]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[8]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[9]  T. Copeland,et al.  Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Osawa,et al.  Recent evidence for evolution of the genetic code , 1992, Microbiological reviews.

[11]  W. Mulbry,et al.  UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis , 1991, Journal of bacteriology.

[12]  R. Shao,et al.  Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). , 2001, Molecular biology and evolution.

[13]  B Franz Lang,et al.  Mitochondria of protists. , 2004, Annual review of genetics.

[14]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[15]  H. Beier,et al.  Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. , 2001, Nucleic acids research.

[16]  Yoshimasa Tanaka,et al.  The mitochondrial DNA of , 2000 .

[17]  E. Böttger,et al.  Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot , 1993, Molecular microbiology.

[18]  D. Rand,et al.  The Population Biology of Mitochondrial DNA and Its Phylogenetic Implications , 2005 .

[19]  Michael Lynch,et al.  Mutation Pressure and the Evolution of Organelle Genomic Architecture , 2006, Science.

[20]  M. Dowton,et al.  Intramitochondrial recombination - is it why some mitochondrial genes sleep around? , 2001, Trends in ecology & evolution.

[21]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[22]  T. Morio,et al.  A site-specific DNA endonuclease specified by one of two ORFs encoded by a group I intron in Dictyostelium discoideum mitochondrial DNA. , 1997, Gene.

[23]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[24]  W. Tate,et al.  Functional Characterization of Yeast Mitochondrial Release Factor 1* , 2000, The Journal of Biological Chemistry.

[25]  T. Morio,et al.  Characterization of a novel small RNA encoded by Dictyostelium discoideum mitochondrial DNA , 1998, Molecular and General Genetics MGG.

[26]  K. Lonergan,et al.  The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. , 1995, Journal of molecular biology.

[27]  Manuel A. S. Santos,et al.  Driving change: the evolution of alternative genetic codes. , 2004, Trends in genetics : TIG.

[28]  H. Jacobs,et al.  Behaviour of a population of partially duplicated mitochondrial DNA molecules in cell culture: segregation, maintenance and recombination dependent upon nuclear background. , 1997, Human molecular genetics.

[29]  Anastasios D. Tsaousis,et al.  Widespread recombination in published animal mtDNA sequences. , 2005, Molecular biology and evolution.

[30]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[31]  D. Bhattacharya,et al.  The evolution of homing endonuclease genes and group I introns in nuclear rDNA. , 2004, Molecular biology and evolution.

[32]  L. Buss,et al.  Comparative Genomics of Large Mitochondria in Placozoans , 2007, PLoS genetics.

[33]  David L. Steffen,et al.  The genome of the social amoeba Dictyostelium discoideum , 2005, Nature.

[34]  M. Yarus,et al.  Transfer RNA mutation and the malleability of the genetic code. , 1994, Journal of molecular biology.

[35]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[36]  A group-I intron in the mitochondrial large-subunit ribosomal RNA-encoding gene of Dictyostelium discoideum: same site localization in alga and in vitro self-splicing. , 1995, Gene.

[37]  Y. Tanaka,et al.  Group-I introns in the cytochrome c oxidase genes of Dictyostelium discoideum : two related ORFs in one loop of a group-I intron, a cox1/2 hybrid gene and an unusually large cox3 gene , 1997, Current Genetics.

[38]  S. Osawa,et al.  Codon reassignment (codon capture) in evolution , 1989, Journal of Molecular Evolution.

[39]  Michael C Whitlock,et al.  The incomplete natural history of mitochondria , 2004, Molecular ecology.

[40]  B. Lang,et al.  Unique mitochondrial genome architecture in unicellular relatives of animals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Pääbo,et al.  Rearrangements of mitochondrial transfer RNA genes in marsupials , 1991, Journal of Molecular Evolution.

[42]  M. Uno,et al.  A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA , 2000, Nature.

[43]  B. Stoddard,et al.  Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. , 2001, Nucleic acids research.

[44]  E. Ladoukakis,et al.  Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. , 2001, Molecular biology and evolution.

[45]  Hervé Philippe,et al.  Evolution of eukaryotic translation elongation and termination factors: variations of evolutionary rate and genetic code deviations. , 2002, Molecular biology and evolution.

[46]  J. Boore,et al.  Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. , 2005, Molecular biology and evolution.

[47]  Austin Burt,et al.  Mitochondrial Genetic Codes Evolve to Match Amino Acid Requirements of Proteins , 2004, Journal of Molecular Evolution.

[48]  Uri Alon,et al.  The genetic code is nearly optimal for allowing additional information within protein-coding sequences. , 2007, Genome research.

[49]  C. Gissi,et al.  Nucleotide Substitution Rate of Mammalian Mitochondrial Genomes , 1999, Journal of Molecular Evolution.

[50]  William Arbuthnot Sir Lane,et al.  Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. , 1998, Biochemistry.

[51]  Steven E. Massey,et al.  A Comparative Genomics Analysis of Codon Reassignments Reveals a Link with Mitochondrial Proteome Size and a Mechanism of Genetic Code Change Via Suppressor tRNAs , 2007, Journal of Molecular Evolution.

[52]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[53]  C. Lemieux,et al.  The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. , 2002, Molecular biology and evolution.

[54]  B. Lang,et al.  Mitochondrial genomes: anything goes. , 2003, Trends in genetics : TIG.

[55]  C. Meiklejohn,et al.  Positive and negative selection on the mitochondrial genome. , 2007, Trends in genetics : TIG.