Physical Modeling Using Digital Waveguides

Historically, physical models have led to prohibitively expensive synthesis algorithms, and commercially available synthesizers do not yet appear to make use of them. These days, most synthesizers use either processed digital recordings (\sampling synthesis") or an abstract algorithm such as Frequency Modulation (FM). However, as computers become faster and cheaper, and as algorithms based on physical models become more e cient, we may expect to hear more from them.

[1]  Robert D. Strum,et al.  First principles of discrete systems and digital signal processing , 1988 .

[2]  T.H. Crystal,et al.  Linear prediction of speech , 1977, Proceedings of the IEEE.

[3]  Perry R. Cook,et al.  Identification Of Control Parameters In An Articulatory Vocal Tract Model, With Applications To The Synthesis Of Singing , 1990 .

[4]  Julius O. Smith A new approach to digital reverberation using closed waveguide networks , 1985 .

[5]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Curtis Roads,et al.  The Music Machine , 1988 .

[7]  Jim Woodhouse,et al.  The physics of the violin , 1986 .

[8]  Curtis Roads,et al.  Foundations of computer music , 1985 .

[9]  Arthur H. Benade,et al.  Equivalent circuits for conical waveguides , 1988 .

[10]  Julius O. Smith Waveguide Simulation of Non-Cylindrical Acoustic Tubes , 1991, ICMC.

[11]  Julius O. Smith,et al.  Efficient Simulation of the Reed-Bore and Bow-String Mechanisms , 1986, ICMC.

[12]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[13]  Ajm Adrian Houtsma,et al.  Quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments , 1990 .

[14]  Julius O. Smith,et al.  A flexible sampling-rate conversion method , 1984, ICASSP.

[15]  Kevin Karplus,et al.  Digital Synthesis of Plucked-String and Drum Timbers , 1983 .

[16]  Douglas H. Keefe,et al.  Experiments on the single woodwind tone hole , 1982 .

[17]  李幼升,et al.  Ph , 1989 .

[18]  Julius O. Smith,et al.  Introduction to digital filter theory , 1985 .

[19]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[20]  Julius O. Smith,et al.  Music applications of digital waveguides , 1987 .

[21]  Pierre Ruiz,et al.  Synthesizing Musical Sounds by Solving the Wave Equation for Vibrating Objects: Part 2 , 1971 .

[22]  Charles R. Sullivan Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Timbres with Distortion and Feedback , 1990 .

[23]  Perry R. Cook,et al.  TBone: An Interactive WaveGuide Brass Instrument Synthesis Workbench for the NeXT Machine , 1991, ICMC.

[24]  Jim Woodhouse,et al.  On the fundamentals of bowed string dynamics , 1979 .

[25]  Douglas H. Keefe,et al.  Theory of the single woodwind tone hole , 1982 .

[26]  R. T. Schumacher,et al.  ON THE OSCILLATIONS OF MUSICAL-INSTRUMENTS , 1983 .

[27]  John Strawn,et al.  Digital Audio Signal Processing: An Anthology , 1986 .

[28]  Julius O. Smith,et al.  Extensions of the Karplus-Strong Plucked-String Algorithm , 1983 .

[29]  Unto K. Laine,et al.  Transmission-Line Modeling and Real-Time Synthesis of String and Wind Instruments , 1991, ICMC.

[30]  René Causse,et al.  Input impedance of brass musical instruments—Comparison between experiment and numerical models , 1984 .

[31]  P. Morse Vibration and Sound , 1949, Nature.

[32]  Nicholas John Loy,et al.  An Engineer's Guide To Fir Digital Filters , 1987 .