The isomorphism problem for tree-automatic ordinals with addition

This paper studies tree-automatic ordinals (or equivalently, well-founded linearly ordered sets) together with the ordinal addition operation +. Informally, these are ordinals such that their elements are coded by finite trees for which the linear order relation of the ordinal and the ordinal addition operation can be determined by tree automata. We describe an algorithm that, given two tree-automatic ordinals with the ordinal addition operation, decides if the ordinals are isomorphic.

[1]  Dietrich Kuske Isomorphisms of scattered automatic linear orders , 2012, CSL.

[2]  Markus Lohrey,et al.  The isomorphism problem for ω-automatic trees , 2010, Ann. Pure Appl. Log..

[3]  Achim Blumensath,et al.  Finite Presentations of Infinite Structures: Automata and Interpretations , 2004, Theory of Computing Systems.

[4]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[5]  Sasha Rubin,et al.  Automata Presenting Structures: A Survey of the Finite String Case , 2008, Bulletin of Symbolic Logic.

[6]  Frank Stephan Automatic Structures — Recent Results and Open Questions , 2015 .

[7]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[8]  Sasha Rubin,et al.  On Isomorphism Invariants of Some Automatic Structures , 2002 .

[9]  Philipp Schlicht,et al.  Automata on ordinals and automaticity of linear orders , 2013, Ann. Pure Appl. Log..

[10]  Anil Nerode,et al.  Open Questions in the Theory of Automatic Structures , 2008, Bull. EATCS.

[11]  André Nies,et al.  Describing Groups , 2007, Bulletin of Symbolic Logic.

[12]  Dietrich Kuske,et al.  Is Cantor's Theorem Automatic? , 2003, LPAR.

[13]  Markus Lohrey,et al.  The Isomorphism Problem on Classes of Automatic Structures , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[14]  Sasha Rubin,et al.  Automata-based presentations of infinite structures , 2011, Finite and Algorithmic Model Theory.

[15]  Olivier Finkel,et al.  A hierarchy of tree-automatic structures , 2011, The Journal of Symbolic Logic.

[16]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[17]  Frank Stephan,et al.  Automatic linear orders and trees , 2005, TOCL.

[18]  G. Cantor,et al.  Beiträge zur Begründung der transfiniten Mengenlehre. (Zweiter Artikel.) , 2022 .

[19]  C. Delhommé Automaticité des ordinaux et des graphes homogènes , 2004 .

[20]  Olivier Finkel,et al.  Automatic Ordinals , 2012, Int. J. Unconv. Comput..

[21]  Philipp Schlicht,et al.  Tree-automatic scattered linear orders , 2016, Theor. Comput. Sci..

[22]  A. Nies,et al.  FA-presentable groups and rings , 2008 .

[23]  Wacław Sierpiński,et al.  Cardinal and Ordinal Numbers , 1966 .