Basalt Weathering in an Arctic Mars-Analog Site

Abstract The martian surface has undergone chemical and physical weathering in the past, and these processes may continue intermittently today. To explore whether martian rocks are likely to retain features indicative of weathering, we investigated how basaltic material weathers on Earth. Specifically, we investigated weathering of a Quaternary-aged basaltic flow at the Sverrefjell volcano in Svalbard, above the Arctic Circle. This flow weathered since deglaciation under cold, dry (

[1]  G. J. Taylor,et al.  Kinetic model of olivine dissolution and extent of aqueous alteration on mars , 2006 .

[2]  R. E. Wilson,et al.  Recent chemical weathering of basalts , 1992 .

[3]  O. Chadwick,et al.  Halloysite as a kinetically controlled end product of arid-zone basalt weathering , 2003 .

[4]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[5]  J. Michalski,et al.  Mineralogical constraints on the high-silica martian surface component observed by TES , 2005 .

[6]  Kenneth L. Pierce,et al.  Weathering rinds on andesitic and basaltic stones as a Quaternary age indicator, Western United States , 1981 .

[7]  Motoharu Kawano,et al.  TEM-EDX study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, Japan , 2001 .

[8]  R. Telford,et al.  Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene , 2007 .

[9]  D. Ming,et al.  Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes , 2012 .

[10]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[11]  R. Clayton,et al.  Mid-Cretaceous tectonic evolution of the Tongareva triple junction in the southwestern Pacific Basin , 2002 .

[12]  J. Rimstidt,et al.  Using a mineral lifetime diagram to evaluate the persistence of olivine on Mars , 2007 .

[13]  G. G. Pohlman Soil Science Society of America , 1940 .

[14]  J. P. Moore,et al.  CHARACTERISTICS AND CLASSIFICATION OF VOLCANIC‐ASH‐DERIVED SOILS IN ALASKA , 1989 .

[15]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[16]  J. M. Tait,et al.  Iron substitution in aluminosilicate sols synthesized at low pH , 1984, Clay Minerals.

[17]  S. Gíslason,et al.  CHEMICAL WEATHERING OF BASALTS, SOUTHWEST ICELAND: EFFECT OF ROCK CRYSTALLINITY AND SECONDARY MINERALS ON CHEMICAL FLUXES TO THE OCEAN , 2001 .

[18]  C. E. Thorn,et al.  Weathering rinds and rock coatings from an Arctic alpine environment, northern Scandinavia. , 2002 .

[19]  Kevin Hall,et al.  Weathering in cold regions: some thoughts and perspectives , 2002 .

[20]  N. Shikazono,et al.  An estimate of dissolution rate constant of volcanic glass in volcanic ash soil from the Mt. Fuji area, central Japan , 2005 .

[21]  O. Chadwick,et al.  Mobilization of colloidal carbon during iron reduction in basaltic soils , 2014 .

[22]  J. Mckeague AN EVALUATION OF 0.1 M PYROPHOSPHATE AND PYROPHOSPHATE-DITHIONITE IN COMPARISON WITH OXALATE AS EXTRACTANTS OF THE ACCUMULATION PRODUCTS IN PODZOLS AND SOME OTHER SOILS , 1967 .

[23]  A. Navarre‐Sitchler,et al.  Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe , 2010 .

[24]  C. Ping,et al.  Properties and classification of three volcanic ash-derived pedons from Aleutian Islands and Alaska Peninsula, Alaska , 1988 .

[25]  E. Vicenzi,et al.  Short- and long-term olivine weathering in Svalbard: implications for Mars. , 2008, Astrobiology.

[26]  A. Navarre‐Sitchler,et al.  Basalt weathering across scales , 2007 .

[27]  William E. Dietrich,et al.  Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis , 1987 .

[28]  J. Clarke,et al.  Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible Earth analogues , 2005 .

[29]  N. Kabengi,et al.  Anoxia-induced release of colloid- and nanoparticle-bound phosphorus in grassland soils. , 2012, Environmental science & technology.

[30]  P. Hudec,et al.  FROST AND SORPTION EFFECTS IN ARGILLACEOUS ROCKS , 1972 .

[31]  O. Chadwick,et al.  The impact of climate on the biogeochemical functioning of volcanic soils , 2003 .

[32]  A. Treiman,et al.  Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway) , 2002 .

[33]  S. Colman Chemical weathering of basalts and andesites; evidence from weathering rinds , 1982 .

[34]  Urs Staufer,et al.  Quantification of the dry history of the Martian soil inferred from in situ microscopy , 2011 .

[35]  A. Karathanasis,et al.  Water dispersible colloids and factors influencing their dispersibility from soil aggregates , 1996 .

[36]  B. Fahey,et al.  An Experimental Study of the Effect of Humidity and Temperature Variations on the Granular Disintegration of Argillaceous Carbonate Rocks in Cold Climates , 1984 .

[37]  S. Brantley,et al.  Rates of weathering rind formation on Costa Rican basalt , 2004 .

[38]  O. Pokrovsky,et al.  Basalt weathering in Central Siberia under permafrost conditions , 2005 .

[39]  G. W. Thomas Soil pH and Soil Acidity , 1996, SSSA Book Series.

[40]  C. T. Hallmark,et al.  Andisols from four different regions of Iceland , 1995 .

[41]  R. Dahlgren Quantification of Allophane and Imogolite , 2015 .

[42]  M. Wilson,et al.  Lichen weathering of minerals: implications for pedogenesis , 1983, Geological Society, London, Special Publications.

[43]  L. Gualtieri,et al.  Northwest Svalbard during the last glaciation: Ice-free areas existed , 2003 .

[44]  R. Parfitt,et al.  Identification and Structure of Two Types of Allophane from Volcanic Ash Soils and Tephra , 1980 .

[45]  R. Dahlgren,et al.  Chapter 5 Mineralogical Characteristics of Volcanic Ash Soils , 1993 .

[46]  C. E. Thorn Bedrock freeze‐thaw weathering regime in an alpine environment, colorado front range , 1979 .

[47]  J. Chorover,et al.  Implications of the evolution of organic acid moieties for basalt weathering over geological time , 2005 .

[48]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[49]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[50]  Katsuya Nakaishi,et al.  Size and Shape of Allophane Particles in Dispersed Aqueous Systems , 1996 .

[51]  A. Klute,et al.  Methods of soil analysis , 2015, American Potato Journal.

[52]  David L. Kirchman,et al.  The oceanic gel phase: a bridge in the DOM-POM continuum , 2004 .

[53]  D. Sparks,et al.  Methods of soil analysis. Part 3 - chemical methods. , 1996 .

[54]  S. Gíslason,et al.  Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover , 1996 .

[55]  J. Keith Fraser,et al.  Freeze-Thaw Frequencies and Mechanical Weathering in Canada , 1959 .

[56]  A. Banin The missing crystalline minerals in Mars soil , 1996 .

[57]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[58]  Kevin Hall,et al.  WEATHERING BY WETTING AND DRYING: SOME EXPERIMENTAL RESULTS , 1996 .

[59]  D. Ming,et al.  Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii , 2010 .

[60]  M. Mellon,et al.  Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions. , 2003, Astrobiology.

[61]  J. Kimble,et al.  Andisols of Deserts in Iceland , 2001 .

[62]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[63]  B. Fahey Frost action and hydration as rock weathering mechanisms on schist: A laboratory study , 1983 .

[64]  S. McLennan Sedimentary silica on Mars , 2003 .

[65]  J. C. Lobartini,et al.  Allophane, aluminum, and organic matter accumulation across a bioclimatic sequence of volcanic ash soils of Argentina , 2005 .

[66]  S. Brantley,et al.  Approaches to Modeling Weathered Regolith , 2009 .

[67]  Y. Kitagawa Dehydration of allophane and lts structural formula , 1974 .

[68]  R. Parfitt,et al.  Volcanic ash and its clay mineralogy at Cape Hoskins, New Britain, Papua New Guinea , 1974 .

[69]  A. Treiman Eruption age of the Sverrefjellet volcano, Spitsbergen Island, Norway , 2012 .

[70]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[71]  M. Saigusa,et al.  Amorphous clay materials of towada ando soils , 1977 .

[72]  W. Griffin,et al.  A primitive alkali basaltic stratovolcano and associated eruptive centres, Northwestern Spitsbergen: Volcanology and tectonic significance , 1989 .

[73]  O. Chadwick,et al.  Colloid mobilization during soil iron redox oscillations. , 2006, Environmental science & technology.

[74]  S. Gíslason,et al.  Controls on Chemical Weathering of Basalt , 2001 .

[75]  Ó. Arnalds Volcanic soils of Iceland , 2004 .

[76]  R. Eggleton,et al.  Weathering of Basalt: Changes in Rock Chemistry and Mineralogy , 1987 .

[77]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[78]  M. Russell,et al.  Weathering sequence of soils from volcanic ash involving allophane and halloysite, New Zealand , 1983 .

[79]  Christopher P. McKay,et al.  Making Mars habitable , 1991, Nature.

[80]  R. Dorn,et al.  In situ weathering rind erosion , 2005 .

[81]  I. Hanssen‐Bauer,et al.  Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? , 1998 .

[82]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[83]  A. Navarre‐Sitchler,et al.  Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars , 2008 .

[84]  M. E. Essington,et al.  Soil and water chemistry : an integrative approach , 2004 .

[85]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[86]  M. Jackson Soil Chemical Analysis - Advanced Course. , 1969 .

[87]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[88]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[89]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[90]  R. Clark,et al.  Evidence for Low-Grade Metamorphism, Hydrothermal Alteration, and Diagenesis on Mars from Phyllosilicate Mineral Assemblages , 2011 .

[91]  R. Gilkes Transmission Electron Microscope Analysis of Soil Materials , 1994 .

[92]  S. P. Anderson,et al.  Linkages Between Weathering and Erosion in a Small, Steep Catchment , 2002 .

[93]  J. Michalski,et al.  Effects of chemical weathering on infrared spectra of Columbia River Basalt and spectral interpretations of martian alteration , 2006 .

[94]  J. Mckeague,et al.  DITHIONITE- AND OXALATE-EXTRACTABLE Fe AND Al AS AIDS IN DIFFERENTIATING VARIOUS CLASSES OF SOILS , 1966 .

[95]  R. Dahlgren,et al.  Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA , 2010 .

[96]  S. McLennan,et al.  A ∼3.5 Ga record of water-limited, acidic weathering conditions on Mars , 2007 .

[97]  C. T. Hallmark,et al.  Clay minerals of four soils formed in eolian and tephra materials in Iceland , 1992 .

[98]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.