Spectral Theory for Schr\"odinger operators on compact metric graphs with $\delta$ and $\delta'$ couplings: a survey

Spectral properties of Schr\"odinger operators on compact metric graphs are studied and special emphasis is put on differences in the spectral behavior between different classes of vertex conditions. We survey recent results especially for $\delta$ and $\delta'$ couplings and demonstrate the spectral properties on many examples. Amongst other things, properties of the ground state eigenvalue and eigenfunction and the spectral behavior under various perturbations of the metric graph or the vertex conditions are considered.

[1]  A. Kostenko,et al.  Laplacians on Infinite Graphs , 2021, Memoirs of the European Mathematical Society.

[2]  Delio Mugnolo,et al.  On torsional rigidity and ground-state energy of compact quantum graphs , 2021, Calculus of Variations and Partial Differential Equations.

[3]  Aleksey Kostenko,et al.  Laplacians on infinite graphs: discrete vs continuous , 2021, 2110.03566.

[4]  Matthias Taufer,et al.  On fully supported eigenfunctions of quantum graphs , 2021, 2106.10096.

[5]  Mahmood Ettehad,et al.  Three‐dimensional elastic beam frames: Rigid joint conditions in variational and differential formulation , 2021, Studies in Applied Mathematics.

[6]  Delio Mugnolo,et al.  On Pleijel’s Nodal Domain Theorem for Quantum Graphs , 2020, Annales Henri Poincaré.

[7]  Delio Mugnolo,et al.  Higher-Order Operators on Networks: Hyperbolic and Parabolic Theory , 2020, Integral Equations and Operator Theory.

[8]  Jonathan Rohleder,et al.  The Krein–von Neumann Extension for Schrödinger Operators on Metric Graphs , 2020, Complex Analysis and Operator Theory.

[9]  Jonathan Rohleder Quantum trees which maximize higher eigenvalues are unbalanced , 2020, Proceedings of the American Mathematical Society, Series B.

[10]  Marvin Plümer,et al.  Upper eigenvalue bounds for the Kirchhoff Laplacian on embedded metric graphs , 2020, Journal of Spectral Theory.

[11]  J. Kennedy,et al.  On the hot spots of quantum graphs , 2020, Communications on Pure & Applied Analysis.

[12]  Delio Mugnolo,et al.  Schrödinger and polyharmonic operators on infinite graphs: Parabolic well-posedness and p-independence of spectra , 2020, 2003.12031.

[13]  J. Kennedy,et al.  On the eigenvalues of quantum graph Laplacians with large complex $\delta$ couplings , 2020, 2001.10244.

[14]  R. Band,et al.  Neumann Domains on Quantum Graphs , 2019, Annales Henri Poincaré.

[15]  Delio Mugnolo,et al.  Self‐adjoint and Markovian extensions of infinite quantum graphs , 2019, Journal of the London Mathematical Society.

[16]  Delio Mugnolo,et al.  Lower estimates on eigenvalues of quantum graphs , 2019, 1907.13350.

[17]  P. Kurasov On the ground state for quantum graphs , 2019, Letters in Mathematical Physics.

[18]  P. Kurasov,et al.  Laplacians on bipartite metric graphs , 2019, 1907.00791.

[19]  D. Borthwick,et al.  Sharp diameter bound on the spectral gap for quantum graphs , 2019, Proceedings of the American Mathematical Society.

[20]  P. Kurasov,et al.  Optimal Potentials for Quantum Graphs , 2019, Annales Henri Poincaré.

[21]  A. Kostenko,et al.  Quantum graphs on radially symmetric antitrees , 2019, Journal of Spectral Theory.

[22]  G. Berkolaiko,et al.  Surgery principles for the spectral analysis of quantum graphs , 2018, Transactions of the American Mathematical Society.

[23]  G. Berkolaiko,et al.  Limits of quantum graph operators with shrinking edges , 2018, Advances in Mathematics.

[24]  C. Seifert,et al.  Spectral Monotonicity for Schrödinger Operators on Metric Graphs , 2018, Discrete and Continuous Models in the Theory of Networks.

[25]  E. Harrell,et al.  Localization and landscape functions on quantum graphs , 2018, Transactions of the American Mathematical Society.

[26]  Delio Mugnolo,et al.  Bi-Laplacians on graphs and networks , 2017, Journal of Evolution Equations.

[27]  A. Kostenko,et al.  Spectral estimates for infinite quantum graphs , 2017, Calculus of Variations and Partial Differential Equations.

[28]  C. Seifert The linearized Korteweg-de-Vries equa- tion on general metric graphs , 2017, 1711.00703.

[29]  G. Berkolaiko,et al.  Nodal Statistics on Quantum Graphs , 2017, Communications in Mathematical Physics.

[30]  H. Neidhardt,et al.  Spectral Theory of Infinite Quantum Graphs , 2017, Annales Henri Poincaré.

[31]  G. Berkolaiko,et al.  Edge connectivity and the spectral gap of combinatorial and quantum graphs , 2017, 1702.05264.

[32]  C. Seifert,et al.  Dirichlet forms for singular diffusion on graphs , 2016, 1608.02463.

[33]  Delio Mugnolo,et al.  Airy-type evolution equations on star graphs , 2016, 1608.01461.

[34]  R. Band,et al.  Quantum Graphs which Optimize the Spectral Gap , 2016, 1608.00520.

[35]  Jonathan Rohleder Eigenvalue estimates for the Laplacian on a metric tree , 2016, 1602.03864.

[36]  E. Harrell,et al.  On Agmon Metrics and Exponential Localization for Quantum Graphs , 2015, 1508.06922.

[37]  Delio Mugnolo,et al.  On the Spectral Gap of a Quantum Graph , 2015, 1504.01962.

[38]  P. Kurasov,et al.  Schrödinger operators on graphs: Symmetrization and Eulerian cycles , 2015 .

[39]  S. Naboko,et al.  Rayleigh estimates for differential operators on graphs , 2014 .

[40]  Delio Mugnolo Semigroup Methods for Evolution Equations on Networks , 2014 .

[41]  P. Kurasov On the Spectral Gap for Laplacians on Metric Graphs , 2013 .

[42]  D. Krejčiřík,et al.  Non-self-adjoint graphs , 2013, 1308.4264.

[43]  M. Waurick,et al.  Boundary systems and (skew‐)self‐adjoint operators on infinite metric graphs , 2013, 1308.2635.

[44]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[45]  Amru Hussein Bounds on the Negative Eigenvalues of Laplacians on Finite Metric Graphs , 2012, 1211.4139.

[46]  Delio Mugnolo,et al.  Quantum graphs with mixed dynamics: the transport/diffusion case , 2012, Journal of Physics A: Mathematical and Theoretical.

[47]  M. Kaliske,et al.  On the well-posedness of evolutionary equations on infinite graphs , 2012 .

[48]  O. Post Spectral Analysis on Graph-like Spaces , 2012 .

[49]  P. Exner,et al.  On the ground state of quantum graphs with attractive δ-coupling , 2011, 1110.1800.

[50]  J. Behrndt,et al.  On the number of negative eigenvalues of the Laplacian on a metric graph , 2010 .

[51]  P. Kuchment,et al.  Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths , 2010, 1008.0369.

[52]  T. Klauss,et al.  Dirichlet forms for singular one-dimensional operators and on graphs , 2009 .

[53]  Peter Kuchment,et al.  Homogeneous trees of second order Sturm-Liouville equations: A general theory and program , 2008, 0802.3442.

[54]  R. Schrader,et al.  Contraction semigroups on metric graphs , 2007, 0712.0914.

[55]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[56]  P. Kuchment Quantum graphs , 2004 .

[57]  J. Harrison,et al.  Spectral statistics for the Dirac operator on graphs , 2002, nlin/0210029.

[58]  R. Schrader,et al.  Kirchhoff's rule for quantum wires , 1998, math-ph/9806013.

[59]  C. Cattaneo The spectrum of the continuous Laplacian on a graph , 1997 .

[60]  J. Below A characteristic equation associated to an eigenvalue problem on c2-networks , 1985 .

[61]  P. Kurasov,et al.  On the Spectral Gap for Networks of Beams , 2021, Springer Proceedings in Mathematics & Statistics.

[62]  Radoslaw K. Wojciechowski,et al.  Graphs and Discrete Dirichlet Spaces , 2021, Grundlehren der mathematischen Wissenschaften.

[63]  J. Kennedy A Family of Diameter-Based Eigenvalue Bounds for Quantum Graphs , 2020, Discrete and Continuous Models in the Theory of Networks.

[64]  P. Kurasov Spectral Gap for Complete Graphs: Upper and Lower Estimates , 2015 .

[65]  Leonid Friedlander,et al.  Extremal properties of eigenvalues for a metric graph , 2005 .

[66]  J. Weidmann Lineare Operatoren in Hilberträumen , 2000 .

[67]  Tosio Kato Perturbation theory for linear operators , 1966 .