Improving energy efficiency using a link adaptation algorithm dedicated for 100 Gbps wireless communication

Abstract This paper presents a link adaptation algorithm dedicated for 100 Gbps wireless transmission. Interleaved Reed-Solomon codes are selected as forward error correction (FEC) algorithms. The redundancy of the codes is selected according to the channel bit error rate (BER). The uncomplicated FEC scheme allows implementing a complete data link layer processor in an FPGA (field programmable gate array). In our case, we use the Virtex7 FPGA to validate the functionality of our implementation. The proposed FPGA-processor achieves 169 Gbps throughput. Moreover, the implementation is synthesized into 40 nm CMOS technology and the described link adaptation algorithm allows reducing consumed energy per bit to values below 1 pJ/bit at BER

[1]  Eckhard Grass,et al.  Performance and complexity analysis of channel coding schemes for multi-Gbps wireless communications , 2012, 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC).

[2]  Janusz Grzyb,et al.  A Fully Integrated 240-GHz Direct-Conversion Quadrature Transmitter and Receiver Chipset in SiGe Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[3]  Koji Takinami,et al.  A 6.16Gb/s 4.7pJ/bit/iteration LDPC decoder for IEEE 802.11ad standard in 40nm LP-CMOS , 2015, 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[4]  Gerhard Fettweis,et al.  A 60GHz LOS MIMO Backhaul Design Combining Spatial Multiplexing and Beamforming for a 100Gbps Throughput , 2014, GLOBECOM 2014.

[5]  Rolf Kraemer,et al.  Parallel RS Error Correction Structures Dedicated for 100 Gbps Wireless Data Link Layer , 2015, 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB).

[6]  Norbert Wehn,et al.  A new dimension of parallelism in ultra high throughput LDPC decoding , 2013, SiPS 2013 Proceedings.

[7]  Soo Young Shin Throughput analysis of IEEE 802.15.4 network under IEEE 802.11 network interference , 2013 .

[8]  Shu Lin,et al.  Error Control Coding , 2004 .

[9]  Andreas Wolf,et al.  Wireless 100 Gb/s: PHY layer overview and challenges in the THz freqency band , 2014, WAMICON 2014.

[10]  Swapnil Mhaske,et al.  Rapid and high-level constraint-driven prototyping using lab VIEW FPGA , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[11]  Eckhard Grass,et al.  Next generation mm-Wave wireless backhaul based on LOS MIMO links , 2016, 2016 German Microwave Conference (GeMiC).

[12]  H. Schwetlick,et al.  PSSS - parallel sequence spread spectrum a physical layer for RF communication , 2004, IEEE International Symposium on Consumer Electronics, 2004.

[13]  Eckhard Grass,et al.  Performance evaluation of channel coding for Gbps 60-GHz OFDM-based wireless communications , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[14]  K.D.R. Jagath-Kumara Implementation problems of retransmission protocols: SR-ARQ revisited , 2015 .

[15]  Rolf Kraemer,et al.  100 Gbps wireless – data link layer VHDL implementation , 2015 .

[16]  Rolf Kraemer,et al.  Design and Implementation of an Adaptive Algorithm for Hybrid Automatic Repeat Request , 2015, 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems.

[17]  Shoab A. Khan,et al.  A novel algorithm for link adaptation using fuzzy rule based system for wideband networking waveform of SDR , 2015 .

[18]  A. Tessmann,et al.  Multi-level 20 Gbit/s PSSS transmission using a linearity-limited 240 GHz wireless frontend , 2015, 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS).

[19]  Naresh R. Shanbhag,et al.  High-speed architectures for Reed-Solomon decoders , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[20]  Rolf Kraemer,et al.  Design and performance measurements of an FPGA accelerator for a 100Gbps wireless data link layer , 2015 .

[21]  Rolf Kraemer,et al.  Challenges for 100 Gbit/s end to end communication: Increasing throughput through parallel processing , 2015, 2015 IEEE 40th Conference on Local Computer Networks (LCN).

[22]  Marcus Ehrig,et al.  60GHz broadband MAC system design for cable replacement in machine vision applications , 2013 .

[23]  Rolf Kraemer,et al.  System design considerations for a PSSS transceiver for 100Gbps wireless communication with emphasis on mixed signal implementation , 2015, 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON).

[24]  Tallal Elshabrawy Network throughput analysis of IEEE 802.15.4 enabled wireless sensor networks with FEC coding under external interference , 2015 .

[25]  K Oyamada,et al.  Ultrahigh-Definition Video Transmission and Extremely Green Optical Networks for Future , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Min Li,et al.  An area and energy efficient half-row-paralleled layer LDPC decoder for the 802.11AD standard , 2013, SiPS 2013 Proceedings.

[27]  Yukihiro Nishida,et al.  The Super Hi-Vision Codec , 2007, 2007 IEEE International Conference on Image Processing.

[28]  Ahsan Aziz,et al.  High-Throughput FPGA-Based QC-LDPC Decoder Architecture , 2015, 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall).

[29]  Woo-Yong Choi,et al.  Optimal frame aggregation level for IEEE 802.11 PCF protocol , 2012 .