Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[2] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[3] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[4] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[5] Ricardo H. Nochetto,et al. Removing the saturation assumption in a posteriori error analysis , 1993 .
[6] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[7] R. Bruce Kellogg,et al. On the poisson equation with intersecting interfaces , 1974 .
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[10] Kunibert G. Siebert,et al. ALBERT---Software for scientific computations and applications. , 2001 .
[11] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[12] A Review of A Posteriori Error Estimation , 1996 .
[13] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[14] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .