The Genetics of Blood Pressure Regulation

[1]  Christian Gieger,et al.  Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits , 2018, Nature Genetics.

[2]  J. Osborn,et al.  Lesion of the OVLT markedly attenuates chronic DOCA-salt hypertension in rats. , 2018, American journal of physiology. Regulatory, integrative and comparative physiology.

[3]  O. Melander,et al.  A multilocus genetic risk score is associated with arterial stiffness in hypertensive patients: the CARE NORTH study , 2018, Journal of hypertension.

[4]  A. Chen-Plotkin,et al.  The Post-GWAS Era: From Association to Function. , 2018, American journal of human genetics.

[5]  A. Ferguson,et al.  Brain‐derived neurotrophic factor acts at neurons of the subfornical organ to influence cardiovascular function , 2018, Physiological reports.

[6]  R. Khalil,et al.  Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. , 2018, Biochemical pharmacology.

[7]  P. Mertins,et al.  CLCN2 Chloride Channel Mutations in Familial Hyperaldosteronism Type II , 2017, Nature Genetics.

[8]  K. Lunetta,et al.  Genetic Predisposition, Clinical Risk Factor Burden, and Lifetime Risk of Atrial Fibrillation , 2017, Circulation.

[9]  Y. Hérault,et al.  Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. , 2018, Archives of cardiovascular diseases.

[10]  C. Bourque,et al.  The neural basis of homeostatic and anticipatory thirst , 2018, Nature Reviews Nephrology.

[11]  Jianxin Li,et al.  Blood Pressure Genetic Risk Score Predicts Blood Pressure Responses to Dietary Sodium and Potassium: The GenSalt Study (Genetic Epidemiology Network of Salt Sensitivity) , 2017, Hypertension.

[12]  U. Scholl,et al.  Genetic mechanisms of human hypertension and their implications for blood pressure physiology. , 2017, Physiological genomics.

[13]  P. Elliott,et al.  New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475 000 Individuals , 2017, Circulation. Cardiovascular genetics.

[14]  Andrew D. Johnson,et al.  Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney , 2017, Hypertension.

[15]  Richard J. Johnson,et al.  Role of the Immune System in Hypertension. , 2017, Physiological reviews.

[16]  E. Ling,et al.  The circumventricular organs. , 2017, Histology and histopathology.

[17]  P. Bie,et al.  Normotension, hypertension and body fluid regulation: brain and kidney , 2017, Acta physiologica.

[18]  M. Noda,et al.  Sodium sensing in the subfornical organ and body-fluid homeostasis , 2016, Neuroscience Research.

[19]  S. DiCarlo,et al.  Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension. , 2016, American journal of hypertension.

[20]  Claude Bouchard,et al.  Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci , 2016, Nature Genetics.

[21]  He Zhang,et al.  Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension , 2016, Nature Genetics.

[22]  Xiaofeng Zhu,et al.  The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals , 2016, Nature Genetics.

[23]  M. Pericak-Vance,et al.  UTILITY OF BLOOD PRESSURE GENETIC RISK SCORE IN ADMIXED HISPANIC SAMPLES , 2016, Journal of Human Hypertension.

[24]  Guido Grassi,et al.  Evidence for a critical role of the sympathetic nervous system in hypertension. , 2016, Journal of the American Society of Hypertension : JASH.

[25]  V. Salomaa,et al.  Prediction of Blood Pressure and Blood Pressure Change With a Genetic Risk Score , 2016, Journal of clinical hypertension.

[26]  Jennifer G. Robinson,et al.  Genetic Risk Score for Essential Hypertension and Risk of Preeclampsia. , 2016, American journal of hypertension.

[27]  A. Wirth,et al.  Age-dependent blood pressure elevation is due to increased vascular smooth muscle tone mediated by G-protein signalling. , 2016, Cardiovascular research.

[28]  A. Johnson,et al.  The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. , 2015, American journal of physiology. Regulatory, integrative and comparative physiology.

[29]  Sharon L. R. Kardia,et al.  Current Applications of Genetic Risk Scores to Cardiovascular Outcomes and Subclinical Phenotypes , 2015, Current Epidemiology Reports.

[30]  M. Cho,et al.  The Role of Genetic Risk Score in Predicting the Risk of Hypertension in the Korean population: Korean Genome and Epidemiology Study , 2015, PloS one.

[31]  Andreas Busjahn,et al.  PDE3A mutations cause autosomal dominant hypertension with brachydactyly , 2015, Nature Genetics.

[32]  Murim Choi,et al.  Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism , 2015, eLife.

[33]  Guido Grassi,et al.  The sympathetic nervous system alterations in human hypertension. , 2015, Circulation research.

[34]  M. Caulfield,et al.  Hypertension , 1931, The Lancet.

[35]  H. Othmer,et al.  A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. , 2015, The Journal of physiology.

[36]  Richard J. Johnson,et al.  The immunological basis of hypertension. , 2014, American journal of hypertension.

[37]  T. Coffman The inextricable role of the kidney in hypertension. , 2014, The Journal of clinical investigation.

[38]  M. Lanaspa,et al.  Autoimmunity in the pathogenesis of hypertension , 2014, Nature Reviews Nephrology.

[39]  R. Touyz,et al.  NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. , 2013, Journal of the American Society of Nephrology : JASN.

[40]  D. Beard Tautology vs. physiology in the etiology of hypertension. , 2013, Physiology.

[41]  Annabelle L. Fonseca,et al.  Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism , 2013, Nature Genetics.

[42]  L. Peltonen,et al.  A Blood Pressure Genetic Risk Score Is a Significant Predictor of Incident Cardiovascular Events in 32 669 Individuals , 2013, Hypertension.

[43]  Olle Melander,et al.  Prediction of Blood Pressure Changes Over Time and Incidence of Hypertension by a Genetic Risk Score in Swedes , 2013, Hypertension.

[44]  Richard J. Johnson,et al.  Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension , 2013, Current opinion in nephrology and hypertension.

[45]  Michael E. Hall,et al.  Hypertension: physiology and pathophysiology. , 2012, Comprehensive Physiology.

[46]  Oliver Jung,et al.  Role of Nox4 in murine models of kidney disease. , 2012, Free radical biology & medicine.

[47]  X. Estivill,et al.  KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron , 2012, Nature Genetics.

[48]  C. Wahlestedt,et al.  Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation , 2012, Nature Biotechnology.

[49]  Jai Radhakrishnan,et al.  Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities , 2012, Nature.

[50]  T. Lehtimäki,et al.  Genetic Variants and Blood Pressure in a Population-Based Cohort: The Cardiovascular Risk in Young Finns Study , 2011, Hypertension.

[51]  T. Coffman,et al.  Under pressure: the search for the essential mechanisms of hypertension , 2011, Nature Medicine.

[52]  Christian Gieger,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[53]  S. Mane,et al.  K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension , 2011, Science.

[54]  Jens Titze,et al.  Sodium sensing in the interstitium and relationship to hypertension , 2010, Current opinion in nephrology and hypertension.

[55]  R. Torres,et al.  The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure , 2010, Nature Medicine.

[56]  P. O’Reilly,et al.  Genome-wide association study identifies eight loci associated with blood pressure , 2009, Nature Genetics.

[57]  Andrew D. Johnson,et al.  Genome-wide association study of blood pressure and hypertension , 2009, Nature Genetics.

[58]  K. Alitalo,et al.  Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism , 2009, Nature Medicine.

[59]  J. Montani,et al.  Editorial comment: Montani versus Osborn exchange of views , 2009, Experimental physiology.

[60]  Stefan Offermanns,et al.  G12-G13–LARG–mediated signaling in vascular smooth muscle is required for salt-induced hypertension , 2008, Nature Medicine.

[61]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[62]  C. Wilcox,et al.  NADPH oxidases in the kidney. , 2006, Antioxidants & redox signaling.

[63]  Allen W. Cowley,et al.  Systems analysis of arterial pressure regulation and hypertension , 1972, Annals of Biomedical Engineering.

[64]  P. Houillier,et al.  Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. , 2002, Journal of the American Society of Nephrology : JASN.

[65]  H. Omran,et al.  Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure , 2001, Nature Genetics.

[66]  Robert J. Unwin,et al.  Human Hypertension Caused by Mutations in WNK Kinases , 2001, Science.

[67]  Søren Schifter,et al.  Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I , 1998, Nature Genetics.

[68]  H. Dellmann Structure of the subfornical organ: A review , 1998, Microscopy research and technique.

[69]  J. Gill,et al.  Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. , 1962, The American journal of medicine.

[70]  T. Mansfield,et al.  Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III , 1997, Nature Genetics.

[71]  R. Lifton,et al.  Genetic heterogeneity of Barter's syndrome revealed by mutations in the K+ channel, ROMK , 1996, Nature Genetics.

[72]  R. Lifton,et al.  Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2CI cotransporter NKCC2 , 1996, Nature Genetics.

[73]  Bernard C. Rossier,et al.  Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 , 1996, Nature Genetics.

[74]  R. Lifton,et al.  Gitelman's variant of Barter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter , 1996, Nature Genetics.

[75]  R. Lifton Genetic determinants of human hypertension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[76]  L. Schild,et al.  Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome , 1995, Nature Genetics.

[77]  M. New,et al.  A mutation in the HSD11B2 gene in a family with apparent mineralocorticoid excess. , 1995, The Journal of clinical endocrinology and metabolism.

[78]  Morris Schambelan,et al.  Liddle's syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel , 1994, Cell.

[79]  M. Tusié-Luna,et al.  Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. , 1992, The Journal of clinical investigation.

[80]  J. Lalouel,et al.  A chimaeric llβ-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension , 1992, Nature.

[81]  A. Guyton,et al.  Blood pressure control--special role of the kidneys and body fluids. , 1991, Science.

[82]  A. Guyton,et al.  Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. , 1990, The American journal of physiology.

[83]  M. Waterman,et al.  Structural Characterization of Normal and Mutant Human Steroid 17α- Hydroxylase Genes: Molecular Basis of One Example of Combined 17α- Hydroxylase/17,20 Lyase Deficiency , 1988 .

[84]  W. D. Hall,et al.  Stephen Hales: Theologian, botanist, physiologist, discoverer of hemodynamics , 1987, Clinical cardiology.

[85]  H. Dellmann Fine structural organization of the subfornical organ. A concise review , 1985, Brain Research Bulletin.

[86]  F. Abboud The Sympathetic System in Hypertension: State‐of‐the‐Art Review , 1982, Hypertension.

[87]  J Booth,et al.  A Short History of Blood Pressure Measurement , 1977, Proceedings of the Royal Society of Medicine.

[88]  M. Palkovits,et al.  Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. , 1977, Progress in brain research.

[89]  J. Chalmers,et al.  The role of central catecholamines in the control of blood pressure through the baroreceptor reflex and the nasopharyngeal reflex in the rabbit. , 1977, Progress in brain research.

[90]  R. A. Norman,et al.  Brief Reviews: A Systems Analysis Approach to Understanding Long‐Range Arterial Blood Pressure Control and Hypertension , 1974 .

[91]  A. Routtenberg,et al.  Subfornical Organ: Site of Drinking Elicitation by Angiotensin II , 1973, Science.

[92]  S. Karacadag,et al.  Hereditary Brachydactyly Associated with Hypertension , 1973, Journal of medical genetics.

[93]  K. Akert,et al.  The ganglion psalterii (Spiegel). A brief review of anatomical and physiological aspects of the subfornical organ in mammals. , 1970, Bibliotheca psychiatrica.

[94]  T G Coleman,et al.  Physiologic control of arterial pressure. , 1969, Bulletin of the New York Academy of Medicine.

[95]  L. Welt,et al.  A FAMILIAL DISORDER CHARACTERIZED BY HYPOKALEMIA AND HYPOMAGNESEMIA * , 1969, Annals of the New York Academy of Sciences.

[96]  T. G. Coleman,et al.  Quantitative analysis of the pathophysiology of hypertension. , 1969, Circulation research.

[97]  L. Welt,et al.  A new familial disorder characterized by hypokalemia and hypomagnesemia. , 1966, Transactions of the Association of American Physicians.

[98]  G. Pickering Hyperpiesis: high blood-pressure without evident cause: essential hypertension. , 1965, British medical journal.

[99]  G. Liddle A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion , 1964 .

[100]  V. McKusick Editorial: Genetics and the Nature of Essential Hypertension , 1960 .

[101]  R. Platt HEREDITY IN HYPERTENSION , 1934, The Quarterly journal of medicine.

[102]  W H Lewis,et al.  The Evolution of Clinical Sphygmomanometry. , 1941, Bulletin of the New York Academy of Medicine.

[103]  W. G. Walker,et al.  HEREDITY AND HYPERTENSION , 1924 .

[104]  H. Cushing On Routine Determinations of Arterial Tension in Operating Room and Clinic , 1903 .