Inferring spatial structure from time‐series data: using multivariate state‐space models to detect metapopulation structure of California sea lions in the Gulf of California, Mexico

Summary 1. Understanding spatial structure and identifying subpopulations are critical for estimating population growth rates and extinction risk, and as such essential for e!ective conservation planning. However, movement and spatiotemporal environmental data are often unavailable, limiting our abilitytodirectlydefine subpopulations and theirlevel of asynchrony. 2. This study applies a recently developed statistical technique using time-series analysis of abundance data to identify subpopulations. The approach uses multivariate state-space models and Akaike’s Information Criterion-based model selection to quantify the data support for di!erent subpopulation numbers and configurations. This technique is applied to the population of CaliforniasealionsZalophuscalifornianusintheGulfofCalifornia, Mexico, distributedacross13breeding sites. 3. The abundanceof California sea lions in the Gulfof California has declinedover the lastdecade, though not all areas have been equally a!ected. In light of this variation, it is important to understandthepopulation structuretoensureaccurateviabilityassessmentsand e!ectivemanagement. 4. Ourdatasupportthehypothesisthatthe GulfofCaliforniasealion population hasfoursubpopulations, each with 2‐5 breeding sites. The dynamics between several adjacent subpopulations were correlated, suggesting that they experience similar environmental variation. For each subpopulation,weestimatedlong-termgrowthrates,aswell astheenvironmental andobservationvariation. 5. For most of the subpopulations, our estimates of growth rates were considerably lower than those previously reported. In addition, we found considerable variability across subpopulations in theirprojectedriskof severedeclineoverthe next 50 years. 6. Synthesis and applications. We illustrate a new multivariate state-space modelling technique that usestimeseriesofabundancetoquantifythedatasupportfordi!erentsubpopulationconfigurations. OuranalysisoftheCaliforniasealionpopulationintheGulfofCaliforniaindicatesthatthepopulationisspatiallystructuredintofoursubpopulations,eachexhibitingdistinctrisksofextinction.Based on our results, we recommend that conservation and management e!orts in the Gulf of California focus on the two subpopulations with high probabilities of extinction within the next 50 years (NorthernMidri!,SouthernMidri!).Multivariatestate-spacemodelsprovideapracticalapproach to determine the spatial structure of virtually any species; they may be particularly useful for species ofconservationconcernforwhichdataondispersalandenvironmentaldriversarelikelytobescarce.

[1]  L. Gerber,et al.  Isolation by distance among California sea lion populations in Mexico: redefining management stocks , 2009, Molecular ecology.

[2]  E. Sala,et al.  Fishing Down Coastal Food Webs in the Gulf of California , 2004 .

[3]  D. Stoffer,et al.  Bootstrapping State-Space Models: Gaussian Maximum Likelihood Estimation and the Kalman Filter , 1991 .

[4]  L. Gerber Including behavioral data in demographic models improves estimates of population viability , 2006 .

[5]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[6]  Russell B. Millar,et al.  BUGS in Bayesian stock assessments , 1999 .

[7]  Brian Dennis,et al.  Estimation of Growth and Extinction Parameters for Endangered Species , 1991 .

[8]  R. Wayne,et al.  INTRASPECIFIC GENETIC DIFFERENTIATION IN CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS) FROM SOUTHERN CALIFORNIA AND THE GULF OF CALIFORNIA , 1995 .

[9]  D. Palacios,et al.  Phylogeography of California and Galápagos sea lions and population structure within the California sea lion , 2009 .

[10]  S. Lindley,et al.  ESTIMATION OF POPULATION GROWTH AND EXTINCTION PARAMETERS FROM NOISY DATA , 2003 .

[11]  D. Aurioles‐Gamboa,et al.  Breeding season of the California sea lion (Zalophus californianus) in the Gulf of California, Mexico , 2003 .

[12]  Steven V. Viscido,et al.  A statistical approach to quasi-extinction forecasting. , 2007, Ecology letters.

[13]  E. E. Holmes,et al.  Viability Analysis for Endangered Metapopulations: A Diffusion Approximation Approach , 2004 .

[14]  Michael L. Bonnell,et al.  California sea lion distribution: a statistical analysis of aerial transect data , 1987 .

[15]  L. Gerber,et al.  A noninvasive demographic assessment of sea lions based on stage-specific abundances. , 2008, Ecological applications : a publication of the Ecological Society of America.

[16]  E. E. Holmes,et al.  Estimating risks in declining populations with poor data , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[18]  Joseph E. Cavanaugh,et al.  An improved Akaike information criterion for state-space model selection , 2006, Comput. Stat. Data Anal..

[19]  O. Bjørnstad,et al.  Spatial population dynamics: analyzing patterns and processes of population synchrony. , 1999, Trends in ecology & evolution.

[20]  D. Goodman CONSIDERATION OF STOCHASTIC DEMOGRAPHY IN THE DESIGN AND MANAGEMENT OF BIOLOGICAL RESERVES , 1987 .

[21]  Len Thomas,et al.  Monte carlo inference for state-space models of wild animal populations. , 2009, Biometrics.

[22]  J. Angus Forecasting, Structural Time Series and the Kalman Filter , 1992 .

[23]  L. Gerber,et al.  A Behaviorally Explicit Demographic Model Integrating Habitat Selection and Population Dynamics in California Sea Lions , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[24]  Jay Barlow,et al.  Abundance and population density of cetaceans in the California Current ecosystem , 2007 .

[25]  G. Bartholomew,et al.  The natural history and behavior of the California sea lion , 1969 .

[26]  C. Bradshaw,et al.  Branding can be justified in vital conservation research , 2006, Nature.

[27]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[28]  Ian D. Jonsen,et al.  META‐ANALYSIS OF ANIMAL MOVEMENT USING STATE‐SPACE MODELS , 2003 .

[29]  C. Bradshaw,et al.  Assessing Hot-Iron and Cryo-Branding for Permanently Marking Southern Elephant Seals , 2006 .

[30]  Alan Hastings,et al.  FITTING POPULATION MODELS INCORPORATING PROCESS NOISE AND OBSERVATION ERROR , 2002 .

[31]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[32]  Ilkka Hanski,et al.  Metapopulation dynamics : empirical and theoretical investigations , 1991 .

[33]  J. Cavanaugh,et al.  A BOOTSTRAP VARIANT OF AIC FOR STATE-SPACE MODEL SELECTION , 1997 .

[34]  Brian Dennis,et al.  ESTIMATING POPULATION TREND AND PROCESS VARIATION FOR PVA IN THE PRESENCE OF SAMPLING ERROR , 2004 .

[35]  I. Hanski Metapopulation dynamics , 1998, Nature.

[36]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[37]  P. Koch,et al.  Trophic level and overlap of sea lions (Zalophus californianus) in the Gulf of California, Mexico , 2008 .

[38]  Ray Hilborn,et al.  A state-space mixture approach for estimating catastrophic events in time series data , 2007 .

[39]  H. Pulliam,et al.  Sources, Sinks, and Population Regulation , 1988, The American Naturalist.

[40]  James V. Carretta,et al.  U.S. Pacific Marine Mammal Stock Assessments: 2009 , 2009 .

[41]  L. Gerber,et al.  Incorporating uncertainty in spatial structure for viability predictions: a case study of California sea lions (Zalophus californianus californianus) , 2006 .

[42]  L. Gerber,et al.  Population status and trends of the California sea lion (Zalophus californianus californianus) in the Gulf of California, Mexico , 2006 .

[43]  Brian Dennis,et al.  Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. , 2007, Ecology letters.

[44]  Elizabeth E. Holmes,et al.  Using multivariate state-space models to study spatial structure and dynamics , 2008 .

[45]  S. Lele,et al.  ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE, AND OBSERVATION ERROR , 2006 .

[46]  Richard A. Hinrichsen,et al.  Population viability analysis for several populations using multivariate state-space models , 2009 .

[47]  E. Mellink,et al.  Historical Exploitation of the California Sea Lion, Zalophus californianus, in México , 2000 .

[48]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[49]  D. Aurioles‐Gamboa,et al.  ALGUNOS FACTORES ECOLOGICOS QUE DETERMINAN LA DISTRIBUCION Y ABUNDANCIA DEL LOBO MARINO Zuluphus californiunus, EN EL GOLFO DE CALIFORNIA ECOLOGICAL FACTORS THAT DETERMINE DISTRIBUTION AND ABUNDANCE OF THE CALIFORNIA SEA LION Zalophus californiunus IN THE GULF OF CALIFORNIA , 1994 .

[50]  D. Aurioles‐Gamboa,et al.  Ecological Factors That Determine Distribution And Abundance Of The California Sea Lion Zalophus Californianus In The Gulf Of California , 1994 .

[51]  R. Lande,et al.  Estimating the pattern of synchrony in fluctuating populations , 2005 .