A closer look at determining burning rates with imaging diagnostics

[1]  B. Shaw,et al.  DIGITAL IMAGE ANALYSIS OF BURNING DROPLETS IN THE PRESENCE OF BACKLIGHT DIFFRACTION AND SOOT , 2019, Image Analysis and Stereology.

[2]  A. Mukasyan,et al.  Micro-heterogeneous regimes for gasless combustion of composite materials , 2018 .

[3]  Ethan T. Zepper,et al.  Peering through the flames: imaging techniques for reacting aluminum powders. , 2017, Applied optics.

[4]  Flávio P. Ferreira,et al.  Exploring combined dark and bright field illumination to improve the detection of defects on specular surfaces , 2017 .

[5]  Matthew M. Biss,et al.  Invited Article: Quantitative imaging of explosions with high-speed cameras. , 2016, The Review of scientific instruments.

[6]  Mikael Sjödahl,et al.  Road condition analysis using NIR illumination and compensating for surrounding light , 2016 .

[7]  A. Gash,et al.  Quantifying Dynamic Processes in Reactive Materials: An Extended Burn Tube Test , 2015 .

[8]  A. Gash,et al.  The Role of Fuel Particle Size on Flame Propagation Velocity in Thermites with a Nanoscale Oxidizer , 2014 .

[9]  K. G. Shkadinsky,et al.  Combustion of multilayer systems with random layer thickness distribution: Mathematical modeling , 2012, International Journal of Self-Propagating High-Temperature Synthesis.

[10]  R. Yetter,et al.  Temperature measurements of Al containing nano-thermite reactions using multi-wavelength pyrometry , 2011 .

[11]  Dan Luss,et al.  Novel nanoenergetic system based on iodine pentoxide , 2009 .

[12]  H. J. Wang,et al.  Effects of sample stoichiometry of thermite-based SHS reactions on formation of Nb-Al intermetallics , 2009 .

[13]  C. Yeh,et al.  Formation of TiB2-Al2O3 and NbB2-Al2O3 composites by combustion synthesis involving thermite reactions , 2009 .

[14]  M. Pantoya,et al.  Effect of Bulk Density on Reaction Propagation in Nanothermites and Micron Thermites , 2009 .

[15]  V. Levitas Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism , 2009 .

[16]  R. Yetter,et al.  Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite , 2009 .

[17]  F. Baras,et al.  Models of SHS: An overview , 2007 .

[18]  S. Valliappan,et al.  Reactivity of aluminum nanopowders with metal oxides , 2005 .

[19]  S. Son,et al.  Ignition Characteristics of Metastable Intermolecular Composites , 2004 .

[20]  C. Yeh,et al.  Experimental studies on self-propagating combustion synthesis of niobium nitride , 2004 .

[21]  A. Whybrew High-Speed Imaging , 2003, Handbook of Laser Technology and Applications.

[22]  A. P. Aldushin,et al.  Dynamics in layer models of solid flame propagation , 2000 .

[23]  C. Lonsdale THERMITE RAIL WELDING: HISTORY, PROCESS DEVELOPMENTS, CURRENT PRACTICES AND OUTLOOK FOR THE 21st CENTURY , 2000 .

[24]  Derek Geldart,et al.  The use of bulk density measurements as flowability indicators , 1999 .

[25]  M. E. Brown,et al.  Fuel—Oxidant Particle Contact in Binary Pyrotechnic Reactions , 1998 .

[26]  Z. A. Munir,et al.  Thermite reactions: their utilization in the synthesis and processing of materials , 1993, Journal of Materials Science.

[27]  V. Sanin,et al.  Propagation of a burn front through a long channel , 1991 .

[28]  R. Armstrong Models for Gasless Combustion in Layered Materials and Random Media , 1990 .

[29]  Forman Williams,et al.  The Role of Black Powder in Propelling Charges , 1975 .