Probabilistic electrical resistivity tomography of a CO2 sequestration analog

[1]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[4]  M. H. Waxman,et al.  Electrical Conductivities in Oil-Bearing Shaly Sands , 1968 .

[5]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[6]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[7]  W. Menke Geophysical data analysis , 1984 .

[8]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[9]  E. C. Donaldson,et al.  Relationship between the Archie saturation exponent and wettability , 1989 .

[10]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[11]  J. Pedersen,et al.  Monitoring the Bulalo geothermal reservoir, Philippines, using precision gravity data , 1993 .

[12]  Vincent C. Tidwell,et al.  X ray and visible light transmission for laboratory measurement of two‐dimensional saturation fields in thin‐slab systems , 1994 .

[13]  R G Pratt,et al.  Are our parameter estimators biased? The significance of finite-difference regularization operators , 1995 .

[14]  Roel Snieder,et al.  Model Estimations Biased by Truncated Expansions: Possible Artifacts in Seismic Tomography , 1996, Science.

[15]  R. Knight,et al.  Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks—A network study , 1997 .

[16]  John S. Selker,et al.  A new method for quantification of liquid saturation in 2D translucent porous media systems using light transmission , 2000 .

[17]  A. Binley,et al.  Cross-hole electrical imaging of a controlled saline tracer injection , 2000 .

[18]  J. Scales,et al.  Prior Information and Uncertaintyin Inverse , 2000 .

[19]  Andrew Binley,et al.  Electrical resistance tomography. , 2000 .

[20]  Douglas LaBrecque,et al.  Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ Monitoring , 2001 .

[21]  A. Curtis,et al.  Prior information, sampling distributions, and the curse of dimensionality , 2001 .

[22]  Luis Tenorio,et al.  Prior information and uncertainty in inverse problems , 2001 .

[23]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[24]  Guoping Li,et al.  4D seismic monitoring of CO2 flood in a thin fractured carbonate reservoir , 2003 .

[25]  Robin Newmark,et al.  Monitoring Carbon Dioxide Floods Using Electrical Resistance Tomography (ERT): Sensitivity Studies , 2003 .

[26]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[27]  Alberto Malinverno,et al.  Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes , 2004 .

[28]  Niels Bohr,et al.  Monte Carlo sampling of solutions to inverse problems , 2004 .

[29]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[30]  A. L. Ramirez,et al.  Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach , 2005 .

[31]  A. Binley,et al.  DC Resistivity and Induced Polarization Methods , 2005 .

[32]  O. Eiken,et al.  4D seismic quantification of a growing CO2 plume at Sleipner, North Sea , 2005 .

[33]  Kevin Dodds,et al.  Monitoring CO2 Injection with Cross-Hole Electrical Resistivity Tomography , 2006 .

[34]  Thomas Kalscheuer,et al.  A non-linear truncated SVD variance and resolution analysis of two-dimensional magnetotelluric models , 2007 .

[35]  Cajo J. F. ter Braak,et al.  Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..

[36]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[37]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[38]  Vivek K. Goyal,et al.  Transform-domain sparsity regularization for inverse problems in geosciences , 2009, GEOPHYSICS.

[39]  Kerry Key,et al.  The feasibility of reservoir monitoring using time-lapse marine CSEM , 2009 .

[40]  Vivek K. Goyal,et al.  Compressed History Matching: Exploiting Transform-Domain Sparsity for Regularization of Nonlinear Dynamic Data Integration Problems , 2010 .

[41]  G. Mariéthoz,et al.  Bayesian inverse problem and optimization with iterative spatial resampling , 2010 .

[42]  Andrew Binley,et al.  Structural joint inversion of time‐lapse crosshole ERT and GPR traveltime data , 2010 .

[43]  A. Morelli Monte Carlo sampling of solutions to inverse problems , 2010 .

[44]  Toshifumi Matsuoka,et al.  Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements , 2010 .

[45]  Kristofer Davis,et al.  Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression , 2011 .

[46]  S. A. Hagrey,et al.  CO2 plume modeling in deep saline reservoirs by 2D ERT in boreholes , 2011 .

[47]  Behnam Jafarpour Wavelet Reconstruction of Geologic Facies From Nonlinear Dynamic Flow Measurements , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[48]  M. Landrø,et al.  3D CSEM modeling and time-lapse sensitivity analysis for subsurface CO2 storage , 2012 .

[49]  Olaf A. Cirpka,et al.  Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography , 2012 .

[50]  T. Hansen,et al.  Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling , 2012, Computational Geosciences.

[51]  T. Hansen,et al.  Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information , 2012 .

[52]  Eric Laloy,et al.  Mass conservative three-dimensional water tracer 1 distribution from MCMC inversion of time-lapse 2 GPR data , 2012 .

[53]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[54]  Cornelia Schmidt-Hattenberger,et al.  Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany , 2012 .

[55]  Douglas LaBrecque,et al.  Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration , 2012 .

[56]  M. Sambridge,et al.  Transdimensional tomography with unknown data noise , 2012 .

[57]  T. Hansen,et al.  Monte Carlo Based Tomographic Full Waveform Inversion with Multiple-point a Priori Information , 2012 .

[58]  Stefan Finsterle,et al.  Constraining CO2 simulations by coupled modeling and inversion of electrical resistance and gas composition data , 2013 .

[59]  Susan D. Hovorka,et al.  Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs , 2013 .

[60]  S. Hubbard,et al.  Electrical Resistance Tomographic Profile L2, Site 0, Barrow AK , 2013 .

[61]  Wolfgang Rabbel,et al.  Seismic and geoelectric modeling studies of parameters controlling CO2 geostorage in saline formations , 2013 .

[62]  Cornelia Schmidt-Hattenberger,et al.  Monitoring freshwater salinization in analog transport models by time-lapse electrical resistivity tomography , 2013 .

[63]  M. Sambridge,et al.  Transdimensional inference in the geosciences , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  J. A. Vrugt,et al.  Distributed Soil Moisture from Crosshole Ground‐Penetrating Radar Travel Times using Stochastic Inversion , 2013, 1701.01634.

[65]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[66]  Knud Skou Cordua,et al.  Accounting for imperfect forward modeling in geophysical inverse problems — Exemplified for crosshole tomography , 2014 .

[67]  Niklas Linde,et al.  Falsification and corroboration of conceptual hydrological models using geophysical data , 2014 .