Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging.

[1]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  D. Ford,et al.  Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis. , 2018, Cell stem cell.

[3]  Katherine H. Schreiber,et al.  mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance. , 2017, Cell stem cell.

[4]  T. Cameron Waller,et al.  Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism , 2017, Nature Cell Biology.

[5]  H. Coller,et al.  Lactate dehydrogenase activity drives hair follicle stem cell activation , 2017, Nature Cell Biology.

[6]  Yi Zheng,et al.  Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells , 2017, Cell reports.

[7]  D. Walker,et al.  Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis , 2016, Nature Cell Biology.

[8]  Alexander van Oudenaarden,et al.  Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon , 2016, Proceedings of the National Academy of Sciences.

[9]  E. Passegué,et al.  Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing , 2016, Nature Cell Biology.

[10]  L. Guarente,et al.  mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction , 2016, Cell.

[11]  H. Jasper,et al.  Gastrointestinal stem cells in health and disease: from flies to humans , 2016, Disease Models & Mechanisms.

[12]  Ömer H. Yilmaz,et al.  High fat diet and stem cells: Linking diet to intestinal tumor formation , 2016, Cell cycle.

[13]  A. van Oudenaarden,et al.  Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters. , 2016, Cell stem cell.

[14]  Dudley Lamming,et al.  High fat diet enhances stemness and tumorigenicity of intestinal progenitors , 2016, Nature.

[15]  Manasvi Shah,et al.  Dormant Intestinal Stem Cells Are Regulated by PTEN and Nutritional Status. , 2015, Cell reports.

[16]  Robert Pless,et al.  Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival , 2015, Proceedings of the National Academy of Sciences.

[17]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[18]  Teresa L. Mastracci,et al.  Krt19(+)/Lgr5(-) Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine. , 2015, Cell stem cell.

[19]  P. Carmeliet,et al.  Fatty acid carbon is essential for dNTP synthesis in endothelial cells , 2015, Nature.

[20]  Guo-Fang Zhang,et al.  Multiple Mass Isotopomer Tracing of Acetyl-CoA Metabolism in Langendorff-perfused Rat Hearts , 2015, The Journal of Biological Chemistry.

[21]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[22]  T. Dorff,et al.  Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. , 2014, Cell stem cell.

[23]  D. Sabatini,et al.  Dietary and metabolic control of stem cell function in physiology and cancer. , 2014, Cell stem cell.

[24]  C. Hoppel,et al.  Fatty Acid Chain Elongation in Palmitate-perfused Working Rat Heart , 2014, The Journal of Biological Chemistry.

[25]  Mark P Mattson,et al.  Fasting: molecular mechanisms and clinical applications. , 2014, Cell metabolism.

[26]  S. Tavaré,et al.  Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. , 2013, Cell stem cell.

[27]  L. Partridge,et al.  The Hallmarks of Aging , 2013, Cell.

[28]  S. Samson,et al.  Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: novel protective role of glutathione , 2013, Aging cell.

[29]  R. Russell,et al.  Intestinal label-retaining cells are secretory precursors expressing Lgr5 , 2013, Nature.

[30]  S. Morrison,et al.  Mechanisms that regulate stem cell aging and life span. , 2013, Cell stem cell.

[31]  H. Clevers,et al.  In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration , 2013, Nature.

[32]  A. Brunet,et al.  Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate , 2012, Journal of Cell Science.

[33]  A. Oudenaarden,et al.  Dll1+ secretory progenitor cells revert to stem cells upon crypt damage , 2012, Nature Cell Biology.

[34]  P. Pandolfi,et al.  A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance , 2012, Nature Medicine.

[35]  A. Wagers,et al.  Short-term calorie restriction enhances skeletal muscle stem cell function. , 2012, Cell stem cell.

[36]  Dudley Lamming,et al.  mTORC1 in the Paneth cell niche couples intestinal stem cell function to calorie intake , 2012, Nature.

[37]  M. Capecchi,et al.  The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations , 2011, Proceedings of the National Academy of Sciences.

[38]  Johan Auwerx,et al.  The metabolic footprint of aging in mice , 2011, Scientific reports.

[39]  T. Rando,et al.  Emerging models and paradigms for stem cell ageing , 2011, Nature Cell Biology.

[40]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[41]  D. Sabatini,et al.  mTORC1 controls fasting-induced ketogenesis and its modulation by ageing , 2010, Nature.

[42]  R. Lehmann,et al.  Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila , 2010, PLoS genetics.

[43]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[44]  Hans Clevers,et al.  Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate , 2009, Cell.

[45]  B. Biteau,et al.  JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. , 2008, Cell stem cell.

[46]  Mi-Ae Yoo,et al.  Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor , 2008, Aging cell.

[47]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[48]  R. Evans,et al.  PPARδ: a dagger in the heart of the metabolic syndrome , 2006 .

[49]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[50]  C. Hoppel,et al.  Probing peroxisomal β-oxidation and the labelling of acetyl-CoA proxies with [1-13C]octanoate and [3-13C]octanoate in the perfused rat liver , 2005 .

[51]  Daniel Metzger,et al.  Tissue‐specific and inducible Cre‐mediated recombination in the gut epithelium , 2004, Genesis.

[52]  R. Wanders,et al.  Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. , 1999, Clinica chimica acta; international journal of clinical chemistry.

[53]  I. Weissman,et al.  The aging of hematopoietic stem cells , 1996, Nature Medicine.

[54]  D. Ingram,et al.  Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age , 1990, Mechanisms of Ageing and Development.

[55]  R. Weindruch,et al.  The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. , 1986, The Journal of nutrition.

[56]  H. Clevers,et al.  In Situ Hybridization to Identify Gut Stem Cells. , 2015, Current protocols in stem cell biology.

[57]  A. Nieters,et al.  Differential expression analysis for sequence count data , 2011 .

[58]  R. Evans,et al.  PPAR delta: a dagger in the heart of the metabolic syndrome. , 2006, The Journal of clinical investigation.

[59]  C. Hoppel,et al.  Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver. , 2005, The Biochemical journal.

[60]  T. Kirkwood,et al.  Ageing of murine small intestinal stem cells. , 2001, Novartis Foundation symposium.