Inference in Infinite Superpositions of Non-Gaussian Ornstein--Uhlenbeck Processes Using Bayesian Nonparametic Methods

This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein--Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of the model and prior specification are discussed, and a Markov chain Monte Carlo algorithm for inference is described. The model is fitted to daily returns of four indices: the Standard and Poors 500, the NASDAQ 100, the FTSE 100, and the Nikkei 225. (JEL: C11, C14, C22) Copyright The Author 2011. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

[1]  O. Barndorff-Nielsen Superposition of Ornstein--Uhlenbeck Type Processes , 2001 .

[2]  Ramsés H. Mena,et al.  Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .

[3]  Nikolai Leonenko,et al.  Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models , 2011, Comput. Stat. Data Anal..

[4]  N. Shephard,et al.  Non-Gaussian OU based models and some of their uses in financial economics , 2000 .

[5]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[6]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[7]  D. Stephens,et al.  Stochastic Volatility Modelling with General Marginal Distributions : Inference , Prediction and Model Selection For Option Pricing . , 2006 .

[8]  B. Werker Discussion of "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics" by Barndorff-Nielsen and Shephard , 2001 .

[9]  T. Ferguson,et al.  A Representation of Independent Increment Processes without Gaussian Components , 1972 .

[10]  G. Roberts,et al.  Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes , 2004 .

[11]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[12]  M. Lavine More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[13]  S. Frühwirth-Schnatter,et al.  Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law , 2009 .

[14]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[15]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[16]  Jean-Pierre Fouque,et al.  MCMC Estimation of Multiscale Stochastic Volatility Models , 2010 .

[17]  Jim E. Griffin,et al.  Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes , 2010, Comput. Stat. Data Anal..

[18]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[19]  E. Regazzini,et al.  Theory and numerical analysis for exact distributions of functionals of a Dirichlet process , 2002 .

[20]  M. Steel,et al.  Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility , 2006 .

[21]  T. Hanson Inference for Mixtures of Finite Polya Tree Models , 2006 .

[22]  Francis Tuerlinckx,et al.  Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type , 2009 .

[23]  A. Lijoi,et al.  Distributional results for means of normalized random measures with independent increments , 2003 .

[24]  D. Stephens,et al.  Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection , 2007 .

[25]  O. E. Barndorff-Nielsen,et al.  Spectral Properties of Uperpositions of Ornstein-Uhlenbeck Type Processes , 2005 .

[26]  A. Brix Generalized Gamma measures and shot-noise Cox processes , 1999, Advances in Applied Probability.

[27]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[28]  Jeannette H. C. Woerner Inference in Lévy-type stochastic volatility models , 2007, Advances in Applied Probability.

[29]  Blake LeBaron,et al.  Stochastic Volatility as a Simple Generator of Financial Power-Laws and Long Memory , 2001 .

[30]  W. Sudderth,et al.  Polya Trees and Random Distributions , 1992 .

[31]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[32]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[33]  D. Stephens,et al.  Simulation and inference for stochastic volatility models driven by Lévy processes , 2007 .

[34]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[35]  A. V. D. Vaart,et al.  Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .

[36]  Mark J. Jensen,et al.  Bayesian Semiparametric Stochastic Volatility Modeling , 2008 .

[37]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[38]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .