Limit behaviour of μ-equicontinuous cellular automata

The concept of µ-equicontinuity was introduced in 12 to classify cellular automata. We show that under some conditions the sequence of Cesaro averages of a measure µ, converge under the actions of a µ-equicontinuous CA. We address questions raised in 3 on whether the limit measure is either shift-ergodic, a uniform Bernoulli measure or ergodic with respect to the CA. Many of our results hold for CA on multidimensional subshifts.

[1]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[2]  Jeffrey E. Steif,et al.  Higher-dimensional subshifts of finite type, factor maps and measures of maximal entropy , 2001 .

[3]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[4]  Ethan Akin,et al.  When is a Transitive Map Chaotic , 1996 .

[5]  P. Walters Introduction to Ergodic Theory , 1977 .

[6]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[7]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[8]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[10]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[11]  Marcus Pivato,et al.  Limit measures for affine cellular automata , 2001, Ergodic Theory and Dynamical Systems.

[12]  Felipe Garc'ia-Ramos Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy , 2014, Ergodic Theory and Dynamical Systems.

[13]  Marcus Pivato,et al.  Limit measures for affine cellular automata II , 2001, Ergodic Theory and Dynamical Systems.

[14]  Felipe Garc'ia-Ramos A characterization of {\mu}-equicontinuity for topological dynamical systems , 2013, 1309.0467.

[15]  Ethan M. Coven,et al.  Endomorphisms of irreducible subshifts of finite type , 2005, Mathematical systems theory.

[16]  W. Parry Intrinsic Markov chains , 1964 .

[17]  Pierre Tisseur Density of periodic points, invariant measures and almost equicontinuous points of cellular automata , 2009, Adv. Appl. Math..

[18]  Robert H. Gilman,et al.  Periodic behavior of linear automata , 1988 .

[19]  Pierre Tisseur,et al.  Some properties of cellular automata with equicontinuity points , 2000 .

[20]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[21]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[22]  Tomasz Downarowicz,et al.  Survey of odometers and Toeplitz flows , 2005 .

[23]  Robert H. Gilman Classes of linear automata , 1987 .

[24]  Mathieu Sablik Directional dynamics for cellular automata: A sensitivity to initial condition approach , 2008, Theor. Comput. Sci..

[25]  Alejandro Maass,et al.  On Cesàro Limit Distribution of a Class of Permutative Cellular Automata , 1998 .

[26]  Jarkko Kari,et al.  Statistical Mechanics of Surjective Cellular Automata , 2013, 1311.2319.

[27]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .