Holcf '11: a definitional domain theory for verifying functional programs
暂无分享,去创建一个
[1] Richard S. Bird,et al. Nested Datatypes , 1998, MPC.
[2] Stefan Berghofer,et al. Inductive Datatypes in HOL - Lessons Learned in Formal-Logic Engineering , 1999, TPHOLs.
[3] Nils Anders Danielsson,et al. Fast and loose reasoning is morally correct , 2006, POPL '06.
[4] Nick Benton,et al. Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.
[5] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[6] Franz Regensburger,et al. HOLCF: Higher Order Logic of Computable Functions , 1995, TPHOLs.
[7] Dragan Macos,et al. A study of evaluation order semantics in expressions with side effects , 2000, J. Funct. Program..
[8] Carl A. Gunter. Profinite Solutions For Recursive Domain Equations , 1985 .
[9] Sten Agerholm,et al. A HOL Basis for Reasoning about Functional Programs , 1994 .
[10] Simon Peyton Jones,et al. The Implementation of Functional Programming Languages (Prentice-hall International Series in Computer Science) , 1987 .
[11] Burkhart Wolff,et al. Building Formal Method Tools in the Isabelle/Isar Framework , 2007, TPHOLs.
[12] Carl A. Gunter. Universal Profinite Domains , 1987, Inf. Comput..
[13] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[14] Peyton Jones,et al. Haskell 98 language and libraries : the revised report , 2003 .
[15] Michael J. C. Gordon,et al. From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.
[16] Conor McBride,et al. Applicative programming with effects , 2008, J. Funct. Program..
[17] Wolfgang Breuer,et al. X, Y, Z , 2003 .
[18] Andy Gill. Introducing the Haskell equational reasoning assistant , 2006, Haskell '06.
[19] Paul Hudak,et al. Modular domain specific languages and tools , 1998, Proceedings. Fifth International Conference on Software Reuse (Cat. No.98TB100203).
[20] Graham Hutton,et al. Proof Methods for Corecursive Programs , 2005, Fundam. Informaticae.
[21] Brian Huffman. Stream Fusion , 2009, Arch. Formal Proofs.
[22] Elsa L. Gunter. A Broader Class of Trees for Recursive Type Definitions for HOL , 1993, HUG.
[23] Franz Regensburger,et al. HOLCF: eine konservative Erweiterung von HOL um LCF , 1994 .
[24] Gordon D. Plotkin,et al. A Powerdomain Construction , 1976, SIAM J. Comput..
[25] Graham Hutton,et al. The generic approximation lemma , 2001, Inf. Process. Lett..
[26] Lawrence C. Paulson. Mechanizing Coinduction and Corecursion in Higher-Order Logic , 1997, J. Log. Comput..
[27] Peter Thiemann. Towards a Denotational Semantics for Concurrent State TransformersPeter , 1995 .
[28] Tobias Nipkow,et al. Proof Pearl: Defining Functions over Finite Sets , 2005, TPHOLs.
[29] P. J. Landin,et al. The next 700 programming languages , 1966, CACM.
[30] T. Melham. Automating recursive type definitions in higher order logic , 1989 .
[31] Alexander Krauss,et al. Partial and Nested Recursive Function Definitions in Higher-order Logic , 2010, Journal of Automated Reasoning.
[32] Chang Liu,et al. Term rewriting and all that , 2000, SOEN.
[33] Eduardo Giménez,et al. An Application of Co-inductive Types in Coq: Verification of the Alternating Bit Protocol , 1995, TYPES.
[34] Simon L. Peyton Jones,et al. A semantics for imprecise exceptions , 1999, PLDI '99.
[35] Florian Kammüller,et al. Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.
[36] Brian Huffman,et al. Reasoning with Powerdomains in Isabelle / HOLCF , 2008 .
[37] Carl A. Gunter,et al. Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[38] Dana S. Scott,et al. A Type-Theoretical Alternative to ISWIM, CUCH, OWHY , 1993, Theor. Comput. Sci..
[39] Brian Huffman. A Purely Definitional Universal Domain , 2009, TPHOLs.
[40] Nikolaos Papaspyrou,et al. A Resumption Monad Transformer and its Applications in the Semantics of Concurrency , 2006 .
[41] Richard S. Bird,et al. Introduction to functional programming using haskeu , 1998 .
[42] Lawrence C. Paulson,et al. Logic and computation - interactive proof with Cambridge LCF , 1987, Cambridge tracts in theoretical computer science.
[43] Andrew M. Pitts,et al. A co-Induction Principle for Recursively Defined Domains , 1994, Theor. Comput. Sci..
[44] Brian Huffman,et al. Axiomatic Constructor Classes in Isabelle/HOLCF , 2005, TPHOLs.
[45] William L. Harrison,et al. Fine Control of Demand in Haskell , 2002, MPC.
[46] Johanna Heitzer. (a+b)² = a²+b² ?! , 2012 .
[47] A. Karimi,et al. Master‟s thesis , 2011 .
[48] Olaf Müller,et al. A verification environment for I-O-automata based on formalized meta-theory , 1998 .
[49] Tobias Nipkow,et al. HOLCF = HOL + LCF , 1999, Journal of Functional Programming.
[50] Konrad Slind,et al. Function Definition in Higher-Order Logic , 1996, TPHOLs.
[51] Marinus J. Plasmeijer,et al. Theorem Proving for functional Programmers - Sparkle: A Functional Theorem Prover , 2001 .
[52] 姜乐. a:b:c≠a÷b÷c , 1994 .
[53] Lawrence C. Paulson,et al. Deriving Structural Induction in LCF , 1984, Semantics of Data Types.
[54] Carl A. Gunter. Semantics of programming languages: structures and techniques , 1993, Choice Reviews Online.
[55] Richard S. Bird,et al. Introduction to functional programming , 1988, Prentice Hall International series in computer science.
[56] Clemens Ballarin. Tutorial to locales and locale interpretation , 2005 .
[57] Paul Hudak,et al. Monad transformers and modular interpreters , 1995, POPL '95.
[58] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[59] Alexander Krauss,et al. Recursive Definitions of Monadic Functions , 2010, PAR@ITP.