Fast low rank approximations of matrices and tensors

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given $m\times n$ matrix $A$ by a matrix $B$ of rank at most $k$ which is much smaller than $m$ and $n$. The best rank $k$ approximation can be determined via the singular value decomposition which, however, has prohibitively high computational complexity and storage requirements for very large $m$ and $n$. We present an optimal least squares algorithm for computing a rank $k$ approximation to an $m\times n$ matrix $A$ by reading only a limited number of rows and columns of $A$. The algorithm has complexity $\mathcal O(k^2\max(m,n))$ and allows to iteratively improve given rank $k$ approximations by reading additional rows and columns of $A$. We also show how this approach can be extended to tensors and present numerical results.

[1]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[2]  W. Hackbusch,et al.  Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .

[3]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[4]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[5]  V. Mehrmann,et al.  Best subspace tensor approximations , 2008, 0805.4220.

[6]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[7]  Michael W. Mahoney,et al.  Intra- and interpopulation genotype reconstruction from tagging SNPs. , 2006, Genome research.

[8]  S. Friedland,et al.  Generalized Rank-Constrained Matrix Approximations , 2006, SIAM J. Matrix Anal. Appl..

[9]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[10]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[11]  Santosh S. Vempala,et al.  Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.

[12]  Petros Drineas,et al.  Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.

[13]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .

[14]  L. Lathauwer,et al.  Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices , 2006, Psychometrika.

[15]  Shmuel Friedland,et al.  Fast Monte-Carlo low rank approximations for matrices , 2006, 2006 IEEE/SMC International Conference on System of Systems Engineering.

[16]  S. Muthukrishnan,et al.  Subspace Sampling and Relative-Error Matrix Approximation: Column-Row-Based Methods , 2006, ESA.

[17]  N. Eriksson Algebraic Statistics for Computational Biology: Tree Construction using Singular Value Decomposition , 2005 .

[18]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[19]  Demetri Terzopoulos,et al.  Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.

[20]  David Botstein,et al.  Processing and modeling genome-wide expression data using singular value decomposition , 2001, SPIE BiOS.

[21]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[22]  J. Nagy,et al.  KRONECKER PRODUCT AND SVD APPROXIMATIONS IN IMAGE RESTORATION , 1998 .

[23]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[24]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[25]  G. Stewart Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..

[26]  J. Hamilton,et al.  Principal component analysis, trace elements, and blue crab shell disease. , 1992, Analytical chemistry.

[27]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[28]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[29]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.