Fast low rank approximations of matrices and tensors
暂无分享,去创建一个
[1] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[2] W. Hackbusch,et al. Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .
[3] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[4] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[5] V. Mehrmann,et al. Best subspace tensor approximations , 2008, 0805.4220.
[6] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[7] Michael W. Mahoney,et al. Intra- and interpopulation genotype reconstruction from tagging SNPs. , 2006, Genome research.
[8] S. Friedland,et al. Generalized Rank-Constrained Matrix Approximations , 2006, SIAM J. Matrix Anal. Appl..
[9] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[10] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[11] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[12] Petros Drineas,et al. Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.
[13] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[14] L. Lathauwer,et al. Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices , 2006, Psychometrika.
[15] Shmuel Friedland,et al. Fast Monte-Carlo low rank approximations for matrices , 2006, 2006 IEEE/SMC International Conference on System of Systems Engineering.
[16] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Row-Based Methods , 2006, ESA.
[17] N. Eriksson. Algebraic Statistics for Computational Biology: Tree Construction using Singular Value Decomposition , 2005 .
[18] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[19] Demetri Terzopoulos,et al. Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.
[20] David Botstein,et al. Processing and modeling genome-wide expression data using singular value decomposition , 2001, SPIE BiOS.
[21] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[22] J. Nagy,et al. KRONECKER PRODUCT AND SVD APPROXIMATIONS IN IMAGE RESTORATION , 1998 .
[23] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[24] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[25] G. Stewart. Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..
[26] J. Hamilton,et al. Principal component analysis, trace elements, and blue crab shell disease. , 1992, Analytical chemistry.
[27] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[28] Pieter M. Kroonenberg,et al. Three-mode principal component analysis : theory and applications , 1983 .
[29] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.