Preference-based cone contraction algorithms for interactive evolutionary multiple objective optimization

Abstract We introduce a family of interactive evolutionary algorithms for Multiple Objective Optimization (MOO). In the phase of preference elicitation, a Decision Maker (DM) is asked to compare some pairs of solutions from the current population. Such holistic information is represented by a set of compatible instances of achievement scalarizing or quasi-convex preference functions, which contribute to the construction of preference cones in the objective space. These cones are systematically contracted during the evolutionary search, because an incremental specification of the DM's pairwise comparisons is progressively reducing the DM's most preferred region in the objective space. An inclusion of evolved solutions in this region is used along with the dominance relation to revise an elitism principle of the employed optimization algorithm. In this way, the evolutionary search is focused on a subset of Pareto optimal solutions that are particularly interesting to the DM. We investigate, moreover, how the convergence is influenced by the use of some pre-defined and newly proposed self-adjusting (dynamic) interaction patterns. We also propose a new way for visualizing the progress of an evolutionary search. It supports understanding the differences between effects of a selection pressure imposed by various optimization algorithms.

[1]  Murat Köksalan,et al.  A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation , 2010, IEEE Transactions on Evolutionary Computation.

[2]  Milosz Kadzinski,et al.  Robust indicator-based algorithm for interactive evolutionary multiple objective optimization , 2019, GECCO.

[3]  Milosz Kadzinski,et al.  Expressiveness and robustness measures for the evaluation of an additive value function in multiple criteria preference disaggregation methods: An experimental analysis , 2017, Comput. Oper. Res..

[4]  Kalyanmoy Deb,et al.  A review of hybrid evolutionary multiple criteria decision making methods , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[5]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[6]  Krzysztof Ciomek,et al.  Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models , 2017 .

[7]  Milosz Kadzinski,et al.  EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression , 2019, Comput. Oper. Res..

[8]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[9]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[10]  Yutao Qi,et al.  User-preference based decomposition in MOEA/D without using an ideal point , 2019, Swarm Evol. Comput..

[11]  Michał K. Tomczyk,et al.  Decomposition-Based Interactive Evolutionary Algorithm for Multiple Objective Optimization , 2020, IEEE Transactions on Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[13]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[14]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[15]  Xin Yao,et al.  Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions , 2018, IEEE Transactions on Fuzzy Systems.

[16]  Kalyanmoy Deb,et al.  Reference Point Based NSGA-III for Preferred Solutions , 2018, 2018 IEEE Symposium Series on Computational Intelligence (SSCI).

[17]  Hisao Ishibuchi,et al.  Interactive Multiobjective Optimization: A Review of the State-of-the-Art , 2018, IEEE Access.

[18]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[19]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[20]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[22]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[23]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[24]  L. Vanneschi,et al.  Multi-objective genetic algorithm with variable neighbourhood search for the electoral redistricting problem , 2017, Swarm Evol. Comput..

[25]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[26]  Heike Trautmann,et al.  Multiobjective evolutionary algorithms based on target region preferences , 2018, Swarm Evol. Comput..

[27]  Qingfu Zhang,et al.  Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties , 2019, Swarm Evol. Comput..

[28]  Kaisa Miettinen,et al.  IRA-EMO: Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization , 2019, EMO.

[29]  Kalyanmoy Deb,et al.  Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms , 2003, EMO.

[30]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[31]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[32]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[33]  Pratyush Sen,et al.  Directed Multiple Objective search of design spaces using Genetic Algorithms and neural networks , 1999 .

[34]  Ankur Sinha,et al.  Convex preference cone-based approach for many objective optimization problems , 2018, Comput. Oper. Res..

[35]  Abbas Ahmadi,et al.  Multi-objective evolutionary simulation based optimization mechanism for a novel stochastic reliability centered maintenance problem , 2018, Swarm Evol. Comput..

[36]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[37]  Milosz Kadzinski,et al.  Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems , 2017, Eur. J. Oper. Res..

[38]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[39]  Xiaoyan Sun,et al.  A New Surrogate-Assisted Interactive Genetic Algorithm With Weighted Semisupervised Learning , 2013, IEEE Transactions on Cybernetics.

[40]  A. Jaszkiewicz,et al.  Interactive multiobjective optimization with the Pareto memetic algorithm , 2007 .

[41]  Salvatore Greco,et al.  Dominance-Based Rough Set Approach to Interactive Evolutionary Multiobjective Optimization , 2010, Preferences and Decisions.

[42]  Jing J. Liang,et al.  A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems , 2018, Swarm Evol. Comput..

[43]  Jürgen Branke,et al.  Using Choquet integral as preference model in interactive evolutionary multiobjective optimization , 2016, Eur. J. Oper. Res..

[44]  Murat Köksalan,et al.  Interactive algorithms for a broad underlying family of preference functions , 2018, Eur. J. Oper. Res..

[45]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[46]  Antonio López Jaimes,et al.  An investigation into many-objective optimization on combinatorial problems: Analyzing the pickup and delivery problem , 2018, Swarm Evol. Comput..

[47]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[48]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[49]  J. R. DeShazo,et al.  Designing Choice Sets for Stated Preference Methods: The Effects of Complexity on Choice Consistency , 2002 .

[50]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[51]  Markus Olhofer,et al.  A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges , 2017, Complex & Intelligent Systems.

[52]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[53]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls , 2014, Eur. J. Oper. Res..

[54]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[55]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[56]  Michał K. Tomczyk,et al.  Interactive Evolutionary Multiple Objective Optimization for Group Decision Incorporating Value-based Preference Disaggregation Methods , 2017 .

[57]  Dun-Wei Gong,et al.  Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems , 2013, Inf. Sci..

[58]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[59]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[60]  Merja Halme,et al.  Cone contraction and reference point methods for multi-criteria mixed integer optimization , 2013, Eur. J. Oper. Res..

[61]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[62]  Xiaodong Li,et al.  Integrating user preferences and decomposition methods for many-objective optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[63]  Jürgen Branke,et al.  Interactive Multiobjective Optimization from a Learning Perspective , 2008, Multiobjective Optimization.

[64]  Jyrki Wallenius,et al.  Impact of Number of Interactions, Different Interaction Patterns, and Human Inconsistencies on Some Hybrid Evolutionary Multiobjective Optimization Algorithms , 2015, Decis. Sci..

[65]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[66]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[67]  D. Winterfeldt,et al.  Cognitive and Motivational Biases in Decision and Risk Analysis , 2015, Risk analysis : an official publication of the Society for Risk Analysis.

[68]  Milosz Kadzinski,et al.  Interactive Robust Cone Contraction Method for Multiple Objective Optimization Problems , 2012, Int. J. Inf. Technol. Decis. Mak..

[69]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[70]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[71]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[72]  José Francisco Aldana Montes,et al.  InDM2: Interactive Dynamic Multi-Objective Decision Making Using Evolutionary Algorithms , 2018, Swarm Evol. Comput..

[73]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[74]  Rommert Dekker,et al.  Evaluation of multi-objective optimization approaches for solving green supply chain design problems , 2017 .