Some Weighted Sum Formulas for Multiple Zeta, Hurwitz Zeta, and Alternating Multiple Zeta Values

We perform a further investigation for the multiple zeta values and their variations and generalizations in this paper. By making use of the method of the generating functions and some connections between the higher-order trigonometric functions and the Lerch zeta function, we explicitly evaluate some weighted sums of the multiple zeta, Hurwitz zeta, and alternating multiple zeta values in terms of the Bernoulli and Euler polynomials and numbers. It turns out that various known results are deduced as special cases.

[1]  Hari M. Srivastava,et al.  The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function , 2011 .

[2]  W. Zudilin,et al.  Zeta stars , 2008 .

[3]  Yasuo Ohno,et al.  A generating function for sums of multiple zeta values and its applications , 2007 .

[4]  Francis Brown,et al.  Mixed Tate motives over $\Z$ , 2011, 1102.1312.

[5]  M. Murty,et al.  Multiple Hurwitz Zeta Functions , 2006 .

[6]  S. Muneta On some explicit evaluations of multiple zeta-star values , 2007, 0710.3219.

[7]  Zhongyan Shen,et al.  Some identities for multiple Hurwitz zeta values , 2017 .

[8]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[9]  Li Guo,et al.  Weighted sum formula for multiple zeta values , 2008, 0809.5110.

[10]  D. Zagier Evaluation of the multiple zeta values $\zeta(2,\dots,2,3,2,\dots,2)$ , 2012 .

[11]  Michael E. Hoffman On multiple zeta values of even arguments , 2012, 1205.7051.

[12]  Jianqiang Zhao,et al.  Standard relations of multiple polylogarithm values at roots of unity , 2007, Documenta Mathematica.

[13]  R. Remmert,et al.  Classical Topics in Complex Function Theory , 1997 .

[14]  N. E. Nörlund,et al.  Mémoire sur les polynomes de bernoulli , 1922 .

[15]  T. Cai,et al.  Some identities for multiple Hurwitz-zeta values , 2011 .

[16]  Zhong-hua Li,et al.  Weighted sum formulas of multiple zeta values with even arguments , 2016, 1908.03200.

[17]  Yuan He Explicit expressions for finite trigonometric sums , 2020 .

[18]  Kwang-Wu Chen,et al.  Sum formulas of multiple zeta values with arguments multiples of a common positive integer , 2017 .

[19]  D. Zagier Evaluation of the multiple zeta values , 2012 .

[20]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[21]  Tianxin Cai,et al.  Some identities for multiple zeta values , 2012 .

[22]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[23]  P. Deligne,et al.  Groupes fondamentaux motiviques de Tate mixte , 2003 .

[24]  Don Zagier,et al.  Double Zeta values and modular forms , 2006 .

[25]  Jianqiang Zhao Sum Formula of Multiple Hurwitz-Zeta Values , 2012, 1207.2368.

[26]  Marian Genčev On restricted sum formulas for multiple zeta values with even arguments , 2016 .

[27]  Andrew Granville,et al.  Analytic Number Theory: A Decomposition of Riemann's Zeta-Function , 1997 .

[28]  Jianqiang Zhao Restricted sum formula of alternating Euler sums , 2012, 1207.5366.

[29]  Jonathan M. Borwein,et al.  Generalized subdifferentials: a Baire categorical approach , 2001 .

[30]  Leonard Carlitz,et al.  Eulerian Numbers and Polynomials , 1959 .

[31]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[32]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[33]  A. Goncharov THE DOUBLE LOGARITHM AND MANIN'S COMPLEX FOR MODULAR CURVES , 1997 .