Random walks with internal degrees of freedom

Between two absorbing barriers consider a random walk with a finite number of internal degrees of freedom and with zero drift. By using a functional-analytic approach based on the spectral theory of matrix polynomials, the asymptotics of the first-hitting probabilities is obtained when the distance of the barriers tends to infinity.

[1]  M. Keldysh,et al.  ON THE COMPLETENESS OF THE EIGENFUNCTIONS OF SOME CLASSES OF NON-SELFADJOINT LINEAR OPERATORS , 1971 .

[2]  Andrs Krmli,et al.  Random walks with internal degrees of freedom: II. First-hitting probabilities , 1984 .

[3]  Kurt Friedrichs,et al.  Perturbation of Spectra in Hilbert Space , 1967 .

[4]  D. V. Lindley,et al.  An Introduction to Probability Theory and Its Applications. Volume II , 1967, The Mathematical Gazette.

[5]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[6]  Leonid A. Bunimovich,et al.  Statistical properties of lorentz gas with periodic configuration of scatterers , 1981 .

[7]  J. Lebowitz,et al.  Transport properties of the Lorentz gas: Fourier's law , 1978 .

[8]  K. Arndt,et al.  Asymptotic Properties of the Distribution of the Supremum of a Random Walk on a Markov Chain , 1981 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[10]  L. Bunimovich,et al.  Markov Partitions for dispersed billiards , 1980 .

[11]  B. Gyires Eine Verallgemeinerung des zentralen Grenzwertsatzes , 1962 .

[12]  D. Szász,et al.  Central limit theorem for the Lorentz process via perturbation theory , 1983 .

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  H. D. Miller Absorption Probabilities for Sums of Random Variables Defined on a Finite Markov Chain , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Peter Lancaster,et al.  The theory of matrices , 1969 .