A Logical Viewpoint on Process-algebraic Quotients

We study the following problem: Given a transition system T and its quotient T/∼ under an equivalence ∼, which are the sets L, L′ of Hennessy-Milner formulae such that: if Τ ∈ L and T satisfies Τ, then T/∼ satisfies Τ if Τ ∈ L′ and T/∼ satisfies Τ, then T satisfies Τ.

[1]  Thomas A. Henzinger,et al.  Hybrid Automata with Finite Bisimulatioins , 1995, ICALP.

[2]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[3]  J. Flum,et al.  First-order logic and its extensions , 1975 .

[4]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[5]  Antonín Kucera,et al.  On Finite Representations of Infinite-State Behaviours , 1997, SOFSEM.

[6]  Wojciech Penczek,et al.  Propositional Temporal Logics and Equivalences , 1992, CONCUR.

[7]  Rob J. van Glabbeek,et al.  The Linear Time-Branching Time Spectrum (Extended Abstract) , 1990, CONCUR.

[8]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[9]  Faron Moller,et al.  Simulation and Bisimulation over One-Counter Processes , 2000, STACS.

[10]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[11]  Antonín Kucera,et al.  Simulation Preorder on Simple Process Algebras , 1999, ICALP.

[12]  Antti Valmari,et al.  The Weakest Compositional Semantic Equivalence Preserving Nexttime-less Linear temporal Logic , 1992, CONCUR.

[13]  Antonín Kucera,et al.  Regularity is Decidable for Normed PA Processes in Polynomial Time , 1996, FSTTCS.

[14]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[15]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[16]  Petr Jan Simulation and Bisimulation over One-Counter Processes , 1999 .

[17]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[18]  Bernhard Steffen,et al.  Bisimulation Collapse and the Process Taxonomy , 1996, CONCUR.

[19]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[20]  Javier Esparza,et al.  Deciding Finiteness of Petri Nets Up To Bisimulation , 1996, ICALP.

[21]  Faron Moller,et al.  Checking Regular Properties of Petri Nets , 1995, CONCUR.