Monte Carlo Investigation of Dynamic Critical Phenomena in the Two-Dimensional Kinetic Ising Model

Extending the Monte Carlo method to dynamic critical phenomena we investigated the time-dependent correlation functions in the two-dimensional one-spin-flip Ising model and the critical behavior of the associated relaxation times. These relaxation times are the following: ${\ensuremath{\tau}}_{\ensuremath{\delta}\ensuremath{\mu}}^{\ensuremath{\Delta}T}$, characterizing the approach of the order parameter to equilibrium after a change of temperature $\ensuremath{\Delta}T$ of the system; ${\ensuremath{\tau}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\ensuremath{\mu}}$ and ${\ensuremath{\tau}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\ensuremath{\mu}}^{A}$ characterizing the slowing down of the order-parameter correlation and autocorrelation functions, respectively; ${\ensuremath{\tau}}_{\ensuremath{\delta}\mathcal{H}\ensuremath{\delta}\mathcal{H}}$ and ${\ensuremath{\tau}}_{\ensuremath{\delta}\mathcal{H}\ensuremath{\delta}\mathcal{H}}^{A}$, characterizing the slowing down of the energy correlation and autocorrelation functions; and finally ${\ensuremath{\tau}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\mathcal{H}}$, characterizing the cross-correlation function. We give estimates for the associated exponents ${\ensuremath{\Delta}}_{\ensuremath{\delta}\ensuremath{\mu}}^{\ensuremath{\Delta}T}\ensuremath{\approx}{\ensuremath{\Delta}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\ensuremath{\mu}}\ensuremath{\approx}{\ensuremath{\Delta}}_{\ensuremath{\delta}\mathcal{H}\ensuremath{\delta}\mathcal{H}}\ensuremath{\approx}{\ensuremath{\Delta}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\mathcal{H}}\ensuremath{\approx}1.90\ifmmode\pm\else\textpm\fi{}0.10$, and ${\ensuremath{\Delta}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\ensuremath{\mu}}^{A}\ensuremath{\approx}1.60\ifmmode\pm\else\textpm\fi{}0.10$, ${\ensuremath{\Delta}}_{\ensuremath{\delta}\ensuremath{\mu}\ensuremath{\delta}\mathcal{H}}^{A}\ensuremath{\approx}0.95\ifmmode\pm\else\textpm\fi{}0.10$, ${\ensuremath{\Delta}}_{\ensuremath{\delta}\mathcal{H}\ensuremath{\delta}\mathcal{H}}^{A}\ensuremath{\approx}0$, which are consistent with the dynamic scaling hypothesis and with exact inequalities. A detailed comparison with recent high-temperature-expansion estimates is performed, and the reliability of the Monte Carlo results is carefully analyzed.