A survey of image classification methods and techniques for improving classification performance

Image classification is a complex process that may be affected by many factors. This paper examines current practices, problems, and prospects of image classification. The emphasis is placed on the summarization of major advanced classification approaches and the techniques used for improving classification accuracy. In addition, some important issues affecting classification performance are discussed. This literature review suggests that designing a suitable image‐processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map. Effective use of multiple features of remotely sensed data and the selection of a suitable classification method are especially significant for improving classification accuracy. Non‐parametric classifiers such as neural network, decision tree classifier, and knowledge‐based classification have increasingly become important approaches for multisource data classification. Integration of remote sensing, geographical information systems (GIS), and expert system emerges as a new research frontier. More research, however, is needed to identify and reduce uncertainties in the image‐processing chain to improve classification accuracy.

[1]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[2]  R. Clark,et al.  Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data , 2003 .

[3]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[4]  C. Ricotta,et al.  Evaluating the degree of fuzziness of thematic maps with a generalized entropy function: A methodological outlook , 2002 .

[5]  J Richards,et al.  Computer processing of remotely-sensed images: An introduction , 1990 .

[6]  Armando Apan,et al.  Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery , 2004 .

[7]  Qian Du,et al.  A linear constrained distance-based discriminant analysis for hyperspectral image classification , 2001, Pattern Recognit..

[8]  Elisabetta Binaghi,et al.  Fuzzy contextual classification of multisource remote sensing images , 1997, IEEE Trans. Geosci. Remote. Sens..

[9]  A. MacEachren,et al.  Research Challenges in Geovisualization , 2001, KN - Journal of Cartography and Geographic Information.

[10]  Peter M. Atkinson,et al.  A comparison of texture measures for the per-field classification of Mediterranean land cover , 2004 .

[11]  Melba M. Crawford,et al.  Fusion of airborne polarimetric and interferometric SAR for classification of coastal environments , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  D. Civco Topographic normalization of landsat thematic mapper digital imagery , 1989 .

[13]  Kun Shan Chen,et al.  LAND-COVER CLASSIFICATION OF MULTISPECTRAL IMAGERY USING A DYNAMIC LEARNING NEURAL-NETWORK , 1995 .

[14]  Michele Crosetto,et al.  Uncertainty propagation in models driven by remotely sensed data , 2001 .

[15]  J. Colby,et al.  Topographic Normalization in Rugged Terrain , 1991 .

[16]  Hong Jiang,et al.  The classification of late seral forests in the Pacific Northwest, USA using Landsat ETM+ imagery , 2004 .

[17]  D. Roberts,et al.  Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments , 2001 .

[18]  Peter M. Atkinson,et al.  Fine Spatial Resolution Simulated Satellite Sensor Imagery for Land Cover Mapping in the United Kingdom , 1999 .

[19]  Carolyn T. Hunsaker,et al.  Spatial uncertainty in ecology : implications for remote sensing and GIS applications , 2002 .

[20]  John R. Weeks,et al.  Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models , 2003 .

[21]  F. Maselli,et al.  Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications , 1994 .

[22]  Russell G. Congalton,et al.  A practical look at the sources of confusion in error matrix generation , 1993 .

[23]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[24]  P. Gong,et al.  Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama , 2004 .

[25]  N. S. Rebello,et al.  Supervised and Unsupervised Spectral Angle Classifiers , 2002 .

[26]  Giles M. Foody,et al.  Uncertainty in Remote Sensing and GIS: Foody/Uncertainty in Remote Sensing and GIS , 2006 .

[27]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[28]  Rudolf Richter,et al.  Correction of atmospheric and topographic effects for high-spatial-resolution satellite imagery , 1997, Defense, Security, and Sensing.

[29]  Zhenkui Ma,et al.  Tau coefficients for accuracy assessment of classification of remote sensing data , 1995 .

[30]  J. Schott,et al.  Resolution enhancement of multispectral image data to improve classification accuracy , 1993 .

[31]  Heiko Balzter,et al.  Classification of forest volume resources using ERS tandem coherence and JERS backscatter data , 2004 .

[32]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[33]  Arko Lucieer,et al.  Interactive and visual fuzzy classification of remotely sensed imagery for exploration of uncertainty , 2004, Int. J. Geogr. Inf. Sci..

[34]  Carl W. Ramm,et al.  Correct Formation of the Kappa Coefficient of Agreement , 1987 .

[35]  J. Cihlar,et al.  Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection , 2002 .

[36]  R. DeFries,et al.  Classification trees: an alternative to traditional land cover classifiers , 1996 .

[37]  E. Wolff,et al.  Textural and contextual land-cover classification using single and multiple classifier systems , 2002 .

[38]  J. D. Paola,et al.  The Effect of Neural-Network Structure on a Multispectral Land-Use/Land-Cover Classification , 1997 .

[39]  Robert A. Schowengerdt,et al.  On the estimation of spatial-spectral mixing with classifier likelihood functions , 1996, Pattern Recognit. Lett..

[40]  Jiaguo Qi,et al.  Optimal classification methods for mapping agricultural tillage practices , 2004 .

[41]  M. Ridd,et al.  A SUBPIXEL CLASSIFIER FOR URBAN LAND-COVER MAPPING BASED ON A MAXIMUM-LIKELIHOOD APPROACH AND EXPERT SYSTEM RULES , 2002 .

[42]  M. Goodchild,et al.  Scale in Remote Sensing and GIS , 2023 .

[43]  Fernando Pellon de Miranda,et al.  The semivariogram in comparison to the co-occurrence matrix for classification of image texture , 1998, IEEE Trans. Geosci. Remote. Sens..

[44]  P. J. Howarth,et al.  Multi-Source Spatial Data Integration: Problems and Some Solutions , 1994 .

[45]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  D. Stow,et al.  THE EFFECT OF TRAINING STRATEGIES ON SUPERVISED CLASSIFICATION AT DIFFERENT SPATIAL RESOLUTIONS , 2002 .

[47]  Ann-Marie Flygare A comparison of contextual classification methods using Landsat TM , 1997 .

[48]  P. Collier,et al.  Uncertainty in Remote Sensing and GIS , 2004 .

[49]  Arun D. Kulkarni,et al.  Fuzzy Neural Network Models for Supervised Classification: Multispectral Image Analysis , 1999 .

[50]  M. Jakubauskas,et al.  Effects of Forest Succession on Texture in LandSAT Thematic Mapper Imagery , 1997 .

[51]  C. Ricotta,et al.  Evaluating the classification accuracy of fuzzy thematic maps with a simple parametric measure , 2004 .

[52]  Bernard A. Engel,et al.  Analysis of classification results of remotely sensed data and evaluation of classification algorithms , 1995 .

[53]  Norm Campbell,et al.  On the errors of two estimators of sub-pixel fractional cover when mixing is linear , 1998, IEEE Trans. Geosci. Remote. Sens..

[54]  Stuart R. Phinn,et al.  Optimizing Remotely Sensed Solutions for Monitoring, Modeling, and Managing Coastal Environments , 2000 .

[55]  W. Shi,et al.  Multi-band wavelet for fusing SPOT panchromatic and multispectral images , 2003 .

[56]  Gregory P. Asner,et al.  IKONOS imagery for the Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA) , 2003 .

[57]  Giles M. Foody,et al.  Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches , 2001 .

[58]  Marijke F. Augusteijn,et al.  Fusion of image classifications using Bayesian techniques with Markov random fields , 1999 .

[59]  Sucharita Gopal,et al.  Fuzzy set theory and thematic maps: accuracy assessment and area estimation , 2000, Int. J. Geogr. Inf. Sci..

[60]  J. Franklin,et al.  Rationale and conceptual framework for classification approaches to assess forest resources and properties , 2003 .

[61]  K. M. S. Sharma,et al.  A modified contextual classification technique for remote sensing data , 1998 .

[62]  Raymond L. Czaplewski,et al.  Variance Estimates and Confidence Intervals for the Kappa Measure of Classification Accuracy , 1997 .

[63]  J. Janke,et al.  Rock Glacier Mapping: A Method Utilizing Enhanced TM Data and GIS Modeling Techniques , 2001 .

[64]  Donald A. Walker,et al.  Accuracy Assessment of a Land-Cover Map of the Kuparu k River Basin, Alaska: Considerations for Remote Regions , 1998 .

[65]  Robert A. Neville,et al.  Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of results from SFSI and AVIRIS , 2003 .

[66]  S. Goetz,et al.  IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region , 2003 .

[67]  John A. Richards,et al.  Knowledge-based techniques for multi-source classification , 1990 .

[68]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[69]  E. Moran,et al.  Deforestation in North-Central Yucatan 1985-1995) : Mapping secondary succession of forest and agricultural land use in Sotuta using the cosine of the angle concept , 1999 .

[70]  L. Janssen,et al.  Integrating topographic data with remote sensing for land-cover classification. , 1990 .

[71]  Peter T. Wolter,et al.  Improved forest classification in the northern Lake States using multi-temporal Landsat imagery , 1995 .

[72]  Joon Heo,et al.  A Standardized Radiometric Normalization Method for Change Detection Using Remotely Sensed Imagery , 2000 .

[73]  J. C. Price Comparing MODIS and ETM+ data for regional and global land classification , 2003 .

[74]  D. Fernández-Prieto,et al.  An iterative approach to partially supervised classification problems , 2002 .

[75]  Charalambos Kontoes,et al.  An Experimental System for the Integration of GIS Data in Knowledge-Based Image Analysis for Remote Sensing of Agriculture , 1993, Int. J. Geogr. Inf. Sci..

[76]  J. V. Soares,et al.  An investigation of the selection of texture features for crop discrimination using SAR imagery , 1997 .

[77]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[78]  J. Weeks,et al.  Revealing the Anatomy of Cities through Spectral Mixture Analysis of Multispectral Satellite Imagery: A Case Study of the Greater Cairo Region, Egypt. , 2001 .

[79]  P. Townsend Principles and Applications of Imaging Radar: Manual of Remote Sensing , 2000 .

[80]  Rick L. Lawrence,et al.  Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis , 2004 .

[81]  Paul M. Mather,et al.  Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..

[82]  P. Gong,et al.  Integrated Analysis of Spatial Data from Multiple Sources: Using Evidential Reasoning and Artificial Neural Network Techniques for Geological Mapping , 1996 .

[83]  P. Mather,et al.  Classification Methods for Remotely Sensed Data , 2001 .

[84]  Hamza Erol,et al.  A new supervised classification method for quantitative analysis of remotely-sensed multi-spectral data , 1998 .

[85]  M. Ehlers,et al.  A framework for the modelling of uncertainty between remote sensing and geographic information systems , 2000 .

[86]  W. B. Yates,et al.  Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics , 1995 .

[87]  J. R. Jensen,et al.  Subpixel classification of Bald Cypress and Tupelo Gum trees in thematic mapper imagery , 1997 .

[88]  Laurence Hubert-Moy,et al.  A Comparison of Parametric Classification Procedures of Remotely Sensed Data Applied on Different Landscape Units , 2001 .

[89]  Michael E. Hodgson,et al.  Visual Categorization with Aerial Photographs , 2002 .

[90]  M. Ramsey,et al.  Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers , 2001 .

[91]  G. Venkatachalam,et al.  Technical note: Rotational transformation of remotely sensed data for land use classification , 2000 .

[92]  D. Lobell,et al.  View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS , 2002 .

[93]  D. Michelson Comparison of Algorithms for Classifying Swedish Landcover Using Landsat TM and ERS-1 SAR Data , 2000 .

[94]  S. Ekstrand,et al.  Landsat TM-based forest damage assessment : correction for topographic effects , 1996 .

[95]  M. Batistella,et al.  COMPARISON OF LAND-COVER CLASSIFICATION METHODS IN THE BRAZILIAN AMAZON BASIN , 2004 .

[96]  B. Kartikeyan,et al.  A segmentation approach to classification of remote sensing imagery , 1998 .

[97]  Andrew K. Skidmore,et al.  Integration of classification methods for improvement of land-cover map accuracy , 2002 .

[98]  Hermann Kaufmann,et al.  Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data , 2003 .

[99]  Christopher Small,et al.  The Landsat ETM+ spectral mixing space , 2004 .

[100]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[101]  Michael J. Collins,et al.  Mapping subalpine forest types using networks of nearest neighbour classifiers , 2004 .

[102]  Klaus I. Itten,et al.  A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain , 1997, IEEE Trans. Geosci. Remote. Sens..

[103]  P. Gong,et al.  Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data , 2002 .

[104]  P. C. Smits,et al.  QUALITY ASSESSMENT OF IMAGE CLASSIFICATION ALGORITHMS FOR LAND-COVER MAPPING , 1999 .

[105]  Martien Molenaar,et al.  Terrain objects, their dynamics and their monitoring by the integration of GIS and remote sensing , 1995, IEEE Trans. Geosci. Remote. Sens..

[106]  Manoj K. Arora,et al.  An evaluation of fuzzy classifications from IRS 1C LISS III imagery: A case study , 2003 .

[107]  M. Wulder,et al.  Contextual classification of Landsat TM images to forest inventory cover types , 2004 .

[108]  Jay Gao,et al.  Use of normalized difference built-up index in automatically mapping urban areas from TM imagery , 2003 .

[109]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[110]  J. Linders Comparison of three different methods to select feature for discriminating forest cover types using SAR imagery , 2000 .

[111]  P. Fisher The pixel: A snare and a delusion , 1997 .

[112]  Linda C. van der Gaag,et al.  Visual exploration of uncertainty in remote-sensing classification , 1998 .

[113]  Jinmu Choi,et al.  A hybrid approach to urban land use/cover mapping using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images , 2004 .

[114]  G. Asner,et al.  Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations , 2002 .

[115]  N. Pérez de la Blanca,et al.  Improving classical contextual classifications , 1998 .

[116]  Hyun-Chul Kim,et al.  Constructing support vector machine ensemble , 2003, Pattern Recognit..

[117]  J. T. Gray,et al.  Map-guided approach for the automatic detection on Landsat TM images of forest stands damaged by the spruce budworm , 1998 .

[118]  C. Conese,et al.  Fuzzy classification of spatially degraded Thematic Mapper data for the estimation of sub-pixel components , 1996 .

[119]  Jams L. Cushnie The interactive effect of spatial resolution and degree of internal variability within land-cover types on classification accuracies , 1987 .

[120]  W. Cohen,et al.  Mapping montane tropical forest successional stage and land use with multi-date Landsat imagery , 2000 .

[121]  Martin Brown,et al.  Support vector machines for optimal classification and spectral unmixing , 1999 .

[122]  M. Batistella,et al.  Linear mixture model applied to Amazonian vegetation classification , 2003 .

[123]  Alan T. Murray,et al.  Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques , 2002 .

[124]  Sergio Teggi,et al.  TM and IRS-1C-PAN data fusion using multiresolution decomposition methods based on the 'a tròus' algorithm , 2003 .

[125]  Johannes R. Sveinsson,et al.  Data fusion and feature extraction in the wavelet domain , 2003 .

[126]  S. Ventura,et al.  THE INTEGRATION OF GEOGRAPHIC DATA WITH REMOTELY SENSED IMAGERY TO IMPROVE CLASSIFICATION IN AN URBAN AREA , 1995 .

[127]  S. R. Hale,et al.  Impact of topographic normalization on land-cover classification accuracy , 2003 .

[128]  Volker Walter,et al.  Object-based classification of remote sensing data for change detection , 2004 .

[129]  Geoff Smith,et al.  An evaluation of per-parcel land cover mapping using maximum likelihood class probabilities , 2003 .

[130]  Sigeru Omatu,et al.  Remote sensing image analysis using a neural network and knowledge-based processing , 1997 .

[131]  John T. Finn,et al.  Use of the Average Mutual Information Index in Evaluating Classification Error and Consistency , 1993, Int. J. Geogr. Inf. Sci..

[132]  H. M. Onsi Designing a rule-based classifier using syntactical approach , 2003 .

[133]  Jonathan Williams,et al.  GIS Processing of Geocoded Satellite Data , 2001 .

[134]  S. Romanelli,et al.  Classification of Mediterranean vegetation by TM and ancillary data for the evaluation of fire risk , 2000 .

[135]  Barry Haack,et al.  Radar and Optical Data Comparison/Integration for Urban Delineation: A Case Study , 2002 .

[136]  D. Roberts,et al.  Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon , 2004 .

[137]  Ray Bert,et al.  Book Review: Computer Processing of Remotely-Sensed Images: An Introduction, Third Edition , by Paul M. Mather. Chichester, United Kingdom: John Wiley & Sons Ltd., 2004 , 2004 .

[138]  Paul Aplin,et al.  Sub-pixel land cover mapping for per-field classification , 2001 .

[139]  B. Mannan,et al.  Crisp and fuzzy competitive learning networks for supervised classification of multispectral IRS scenes , 2003 .

[140]  Giles M. Foody,et al.  An evaluation of some factors affecting the accuracy of classification by an artificial neural network , 1997 .

[141]  Eyal Ben-Dor,et al.  A new approach for spectral feature extraction and for unsupervised classification of hyperspectral data based on the Gaussian mixture model , 2001 .

[142]  Fabio Maselli,et al.  Evaluation of contextual, per‐pixel and mixed classification procedures applied to a sub‐tropical landscape , 1994 .

[143]  Gregory S. Biging,et al.  An iterative classification approach for mapping natural resources from satellite imagery , 1996 .

[144]  A. Gillespie,et al.  Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry , 1998 .

[145]  John R. Jensen,et al.  Opening the black box of neural networks for remote sensing image classification , 2004 .

[146]  Rama Chellappa,et al.  Texture classification using features derived from random field models , 1982, Pattern Recognit. Lett..

[147]  R. Dwivedi,et al.  Textural analysis of IRS-1D panchromatic data for land cover classification , 2002 .

[148]  Alan R. Gillespie,et al.  Vegetation in deserts. I - A regional measure of abundance from multispectral images. II - Environmental influences on regional abundance , 1990 .

[149]  K. Price,et al.  Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas , 2002 .

[150]  María Amparo Gilabert,et al.  An atmospheric correction method for the automatic retrieval of surface reflectances from TM images , 1994 .

[151]  Alexander Siegmund,et al.  Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data , 2003 .

[152]  Paul M. Mather,et al.  The use of backpropagating artificial neural networks in land cover classification , 2003 .

[153]  Giles M. Foody,et al.  Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data , 1996 .

[154]  Yaonan Wang,et al.  Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images , 2002, Inf. Fusion.

[155]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[156]  G. Foody,et al.  Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions , 1994 .

[157]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[158]  C. Özkan,et al.  Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities , 2004 .

[159]  S. Tompkins,et al.  Optimization of endmembers for spectral mixture analysis , 1997 .

[160]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[161]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[162]  D. Amarsaikhan,et al.  Data fusion and multisource image classification , 2004 .

[163]  Lucy Bastin,et al.  Visualizing uncertainty in multi-spectral remotely sensed imagery , 2002 .

[164]  D. Lu,et al.  Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery , 2004 .

[165]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[166]  Michael A. Wulder,et al.  Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis , 1996 .

[167]  V. S. Hope,et al.  An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs , 2004 .

[168]  L.L.F. Janssen,et al.  Accuracy assessment of satellite derived land - cover data : a review , 1994 .

[169]  L. P. C. Verbeke,et al.  Reusing back-propagation artificial neural networks for land cover classification in tropical savannahs , 2004 .

[170]  D. Peddle Knowledge formulation for supervised evidential classification , 1995 .

[171]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[172]  S. Franklin Remote Sensing for Sustainable Forest Management , 2001 .

[173]  W. Cohen,et al.  Selection of Remotely Sensed Data , 2003 .

[174]  R. Latifovic,et al.  Land cover from multiple thematic mapper scenes using a new enhancement-classification methodology , 1999 .

[175]  Mark A. Friedl,et al.  Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[176]  O. B. Butusov,et al.  Textural Classification of Forest Types from Landsat 7 Imagery , 2003 .

[177]  S. Sandmeier,et al.  Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment , 1993 .

[178]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[179]  S. Barr,et al.  INFERRING URBAN LAND USE FROM SATELLITE SENSOR IMAGES USING KERNEL-BASED SPATIAL RECLASSIFICATION , 1996 .

[180]  W. Cohen,et al.  Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data , 2001 .

[181]  Robert A. Schowengerdt,et al.  A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery , 1995 .

[182]  G. Shao,et al.  Mapping of boreal vegetation of a temperate mountain in China by multitemporal Landsat TM imagery , 2002 .

[183]  S. Khorram,et al.  A hierarchical methodology framework for multisource data fusion in vegetation classification , 1998 .

[184]  Dong-Chen He,et al.  Texture Unit, Texture Spectrum, And Texture Analysis , 1990 .

[185]  S. Saatchi,et al.  Application of multiscale texture in classifying JERS-1 radar data over tropical vegetation , 2002 .

[186]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[187]  Yun Zhang,et al.  Optimisation of building detection in satellite images by combining multispectral classification and texture filtering , 1999 .

[188]  N. P. Angelo,et al.  On the application of Gabor filtering in supervised image classification , 2003 .

[189]  Aaron Moody,et al.  Using Landscape Spatial Relationships to Improve Estimates of Land-Cover Area from Coarse Resolution Remote Sensing , 1998 .

[190]  M. J. Carlotto,et al.  Spectral Shape Classification of Landsat Thematic Mapper Imagery , 1998 .

[191]  Bassel Solaiman,et al.  Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites , 1999, IEEE Trans. Geosci. Remote. Sens..

[192]  J. Settle,et al.  Linear mixing and the estimation of ground cover proportions , 1993 .

[193]  G. B. Groom,et al.  Contextual correction: techniques for improving land cover mapping from remotely sensed images , 1996 .

[194]  Ian Olthof,et al.  Mapping deciduous forest ice storm damage using Landsat and environmental data , 2004 .

[195]  Sankar K. Pal,et al.  Segmentation of multispectral remote sensing images using active support vector machines , 2004, Pattern Recognit. Lett..

[196]  R. Fernandes,et al.  Approaches to fractional land cover and continuous field mapping: A comparative assessment over the BOREAS study region , 2004 .

[197]  Brian Curtiss,et al.  A method for manual endmember selection and spectral unmixing , 1996 .

[198]  R. Barandela,et al.  Supervised classification of remotely sensed data with ongoing learning capability , 2002 .

[199]  Russell G. Congalton,et al.  Quantifying Spatial Uncertainty in Natural Resources: Theory and Applications for GIS and Remote Sensing , 2000 .

[200]  Thomas R. Allen Advances in remote sensing and GIS analysis , 2001 .

[201]  J. C. Hinton,et al.  GIS and Remote Sensing Integration for Environmental Applications , 1996, Int. J. Geogr. Inf. Sci..

[202]  Serwan M. J. Baban,et al.  Mapping land use/cover distribution on a mountainous tropical island using remote sensing and GIS , 2001 .

[203]  J. K. Lein Applying evidential reasoning methods to agricultural land cover classification , 2003 .

[204]  M. Erikson Species classification of individually segmented tree crowns in high-resolution aerial images using radiometric and morphologic image measures , 2004 .

[205]  M. Friedl,et al.  An Overview of Uncertainty in Optical Remotely Sensed Data for Ecological Applications , 2001 .

[206]  David A. Landgrebe,et al.  MultiSpec: a tool for multispectral--hyperspectral image data analysis , 2002 .

[207]  T. M. Lillesand,et al.  Rule-based classification models: flexible integration of satellite imagery and thematic spatial data , 1992 .

[208]  F. J. García-Haro,et al.  Extraction of Endmembers from Spectral Mixtures , 1999 .

[209]  Andrea Baraldi,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[210]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[211]  A. Goetz,et al.  A comparison of AVIRIS and Landsat for land use classification at the urban fringe , 2004 .

[212]  N. Lam,et al.  Multi-Scale Fractal Analysis of Image Texture and Pattern , 1999 .

[213]  C. Ricotta The influence of fuzzy set theory on the areal extent of thematic map classes , 1999 .

[214]  Elisabetta Binaghi,et al.  A fuzzy set-based accuracy assessment of soft classification , 1999, Pattern Recognit. Lett..

[215]  C. E. Leprieur,et al.  Influence of topography on forest reflectance using Landsat Thematic Mapper and Digital Terrain Data , 1988 .

[216]  Steven E. Franklin,et al.  Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping , 2002 .

[217]  J SejnowskiTerrence,et al.  ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000 .

[218]  Ioannis Z. Gitas,et al.  Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery , 2004 .

[219]  Daniel L. Civco,et al.  Evidential Reasoning-Based Classification of Multi-Source Spatial Data for Improved Land Cover Mapping , 1994 .

[220]  P. Gong,et al.  Frequency-based contextual classification and gray-level vector reduction for land-use identification , 1992 .

[221]  Peng Gong Integrated Analysis of Spatial Data from Multiple Sources: An Overview , 1994 .

[222]  Optimum Band Selection for Supervised Classification of Multispectral Data , 2007 .

[223]  Hamza Erol,et al.  A multispectral classification algorithm for classifying parcels in an agricultural region , 1996 .

[224]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[225]  John Althausen What remote sensing system should be used to collect the data , 2001 .

[226]  B. Xu,et al.  Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image , 2003 .

[227]  Patricia G. Foschi,et al.  DETECTING SUBPIXEL WOODY VEGETATION IN DIGITAL IMAGERY USING TWO ARTIFICIAL INTELLIGENCE APPROACHES , 1997 .

[228]  S. Stehman Estimating the Kappa Coefficient and its Variance under Stratified Random Sampling , 1996 .

[229]  D. Roberts,et al.  Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data , 1993 .

[230]  D. Rokos,et al.  The integration of spatial context information in an experimental knowledge-based system and the supervised relaxation algorithm : two successful approaches to improving SPOT-XS classification , 1996 .

[231]  Jingxiong Zhang,et al.  Alternative Criteria for Defining Fuzzy Boundaries Based on Fuzzy Classification of Aerial Photographs and Satellite Images , 1999 .

[232]  M. Steininger Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .

[233]  S. E. Franklin,et al.  Classification of alpine vegetation using Landsat Thematic Mapper SPOT HRV and DEM data , 1994 .

[234]  Coskun Özkan,et al.  The comparison of activation functions for multispectral Landsat TM image classification , 2003 .

[235]  J San Miguel-Ayanz,et al.  Comparison of single-stage and multi-stage classification approaches for cover type mapping with TM and SPOT data , 1997 .

[236]  Lorenzo Bruzzone,et al.  Image fusion techniques for remote sensing applications , 2002, Inf. Fusion.

[237]  S. Barr,et al.  Distinguishing urban land-use categories in fine spatial resolution land-cover data using a graph-based, structural pattern recognition system , 1997 .

[238]  J. A. Tullis,et al.  Synergistic Use of Lidar and Color Aerial Photography for Mapping Urban Parcel Imperviousness , 2003 .

[239]  F. Canters,et al.  Evaluating the uncertainty of area estimates derived from fuzzy land-cover classification , 1997 .

[240]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[241]  C. V. D. Sande,et al.  A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment , 2003 .

[242]  Ben Gorte,et al.  A method for object-oriented land cover classification combining Landsat TM data and aerial photographs , 2003 .

[243]  Johannes R. Sveinsson,et al.  Classification and feature extraction of AVIRIS data , 1995, IEEE Trans. Geosci. Remote. Sens..

[244]  Y. Ban Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops , 2003 .

[245]  G. G. WILKINSON,et al.  A Review of Current Issues in the Integration of GIS and Remote Sensing Data , 1996, Int. J. Geogr. Inf. Sci..

[246]  K. McGwire,et al.  Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. , 2000 .

[247]  Jonathan Cheung-Wai Chan,et al.  Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data , 2000 .

[248]  R. Latifovic,et al.  Large area forest classification and biophysical parameter estimation using the 5-Scale canopy reflectance model in Multiple-Forward-Mode , 2004 .

[249]  J. Chen,et al.  Classification by progressive generalization: A new automated methodology for remote sensing multichannel data , 1998 .

[250]  Derek R. Peddle,et al.  Optimisation of multisource data analysis: an example using evidential reasoning for GIS data classification , 2002 .

[251]  J. C. Taylor,et al.  Sensitivity of mixture modelling to end‐member selection , 2003 .

[252]  Dongmei Chen,et al.  Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case , 2004 .

[253]  S. Franklin,et al.  Geostatistical and texture analysis of airborne-acquired images used in forest classification , 2004 .

[254]  Christian Töttrup,et al.  Improving tropical forest mapping using multi-date Landsat TM data and pre-classification image smoothing , 2004 .

[255]  P. Hardin Parametric and nearest-neighbor methods for hybrid classification: a comparison of pixel assignment accuracy , 1994 .

[256]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[257]  V. Mesev The use of census data in urban image classification , 1998 .

[258]  Stephen V. Stehman,et al.  A Critical Evaluation of the Normalized Error Matrix in Map Accuracy Assessment , 2004 .

[259]  F. J. Gallego Remote sensing and land cover area estimation , 2004 .

[260]  Siamak Khorram,et al.  Incorporating Ancillary Data into a Logical Filter for Classified Satellite Imagery , 1999 .

[261]  B. Lees,et al.  Combining Non-Parametric Models for Multisource Predictive Forest Mapping , 2004 .

[262]  S. Myint A Robust Texture Analysis and Classification Approach for Urban Land‐Use and Land‐Cover Feature Discrimination , 2001 .

[263]  B. Mannan,et al.  Fuzzy ARTMAP supervised classification of multi-spectral remotely-sensed images , 1998 .

[264]  Ronald M. Welch,et al.  Feature selection for classification of polar regions using a fuzzy expert system , 1996 .

[265]  Karen Payne,et al.  Techniques for Mapping Suburban Sprawl , 2002 .

[266]  Brian M. Steele,et al.  Combining Multiple Classifiers: An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping , 2000 .

[267]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[268]  S. S. Ray Merging of IRS LISS III and PAN data—evaluation of various methods for a predominantly agricultural area , 2004 .

[269]  Stuart R. Phinn,et al.  A framework for selecting appropriate remotely sensed data dimensions for environmental monitoring and management , 1998 .

[270]  Ross S. Lunetta,et al.  Application of multi-temporal Landsat 5 TM imagery for wetland identification , 1999 .

[271]  Eric D. Kolaczyk,et al.  Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing , 2003 .

[272]  A. Koltunov,et al.  Mixture density separation as a tool for high-quality interpretation of multi-source remote sensing data and related issues , 2004 .

[273]  Sucharita Gopal,et al.  Uncertainty and Confidence in Land Cover Classification Using a Hybrid Classifier Approach , 2004 .

[274]  Peng Gong,et al.  A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data , 1992 .

[275]  Daniel K. GORDONt,et al.  A texture-enhancement procedure for separating orchard from forest in Thematic Mapper data , 1986 .

[276]  Sotaro Tanaka,et al.  Improvement of forest type classification by SPOT HRV with 20 m mesh DTM. , 1990 .

[277]  P. Atkinson,et al.  Mapping sub-pixel proportional land cover with AVHRR imagery , 1997 .

[278]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[279]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[280]  F. D. van der Meer,et al.  Iterative spectral unmixing (ISU) , 1999 .

[281]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[282]  M. Herold,et al.  Spatial Metrics and Image Texture for Mapping Urban Land Use , 2003 .

[283]  F. Ulaby,et al.  Multitemporal land-cover classification using SIR-C/X-SAR imagery , 1998 .

[284]  F. Roli,et al.  Multisource Classification of Complex Rural Areas by Statistical and Neural-Network Approaches , 1997 .

[285]  Fabio Maselli,et al.  Definition of Spatially Variable Spectral Endmembers by Locally Calibrated Multivariate Regression Analyses , 2001 .

[286]  Chad Hendrix,et al.  A Comparison of Urban Mapping Methods Using High-Resolution Digital Imagery , 2003 .

[287]  Jinfei Wang,et al.  A rule-based urban land use inferring method for fine-resolution multispectral imagery , 2003 .

[288]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[289]  M. Canty,et al.  Automatic radiometric normalization of multitemporal satellite imagery , 2004 .

[290]  G. Foody Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution , 1998 .

[291]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[292]  U. Benz,et al.  Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information , 2004 .

[293]  O. Dikshit,et al.  Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh , 2001 .

[294]  Peter M. Atkinson,et al.  Choosing an appropriate spatial resolution for remote sensing investigations , 1997 .

[295]  João Roberto dos Santos,et al.  Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest , 2003 .

[296]  Perry J. Hardin,et al.  Statistical Significance and Normalized Confusion Matrices , 1997 .

[297]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[298]  Sunil Narumalani,et al.  Utilizing geometric attributes of spatial information to improve digital image classification , 1998 .

[299]  M. Goodchild,et al.  Spatial Uncertainty in Ecology , 2001, Springer New York.

[300]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[301]  David A. Landgrebe,et al.  Classification of remote sensing images having high spectral resolution , 1996 .

[302]  Qian Du,et al.  Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery , 2003, Pattern Recognit..

[303]  Emmanuel Tonye,et al.  Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images , 2002 .

[304]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[305]  Craig M. Trotter,et al.  Remotely-sensed data as an information source for geographical information systems in natural resource management a review , 1991, Int. J. Geogr. Inf. Sci..

[306]  T. Prato,et al.  Improved urban land cover mapping using multi-temporal IKONOS images for local government planning , 2002 .

[307]  J. Paruelo,et al.  Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data , 2003 .

[308]  D. Ducrot,et al.  Land cover discrimination potential of radar multitemporal series and optical multispectral images in a Mediterranean cultural landscape , 2004 .

[309]  Guobin Zhu,et al.  Classification using ASTER data and SVM algorithms;: The case study of Beer Sheva, Israel , 2002 .

[310]  D. Peddle,et al.  Spectral texture for improved class discrimination in complex terrain , 1989 .

[311]  Terrence J. Sejnowski,et al.  ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[312]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[313]  Lorenzo Bruzzone,et al.  A neural-statistical approach to multitemporal and multisource remote-sensing image classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[314]  Richard R. Forster,et al.  Fusion of hyperspectral and radar data using the IHS transformation to enhance urban surface features , 2003 .

[315]  Jon Atli Benediktsson,et al.  Classification of multisource and hyperspectral data based on decision fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[316]  L. Boresjö Bronge Mapping Boreal Vegetation Using Landsat-TM and Topographic Map Data in a Stratified Approach , 1999 .

[317]  Alan H. Strahler,et al.  On the nature of models in remote sensing , 1986 .

[318]  A. Cracknell Review article Synergy in remote sensing-what's in a pixel? , 1998 .

[319]  Giles M. Foody,et al.  On the compensation for chance agreement in image classification accuracy assessment, Photogram , 1992 .

[320]  Manfred Ehlers,et al.  Remote Sensing And Geographic Information Systems: Towards Integrated Spatial Information Processing , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[321]  Marvin E. Bauer,et al.  Integrating Contextual Information with per-Pixel Classification for Improved Land Cover Classification , 2000 .

[322]  Shiyoshi Yokoyama,et al.  Land use classification with textural analysis and the aggregation technique using multi-temporal JERS-1 L-band SAR images , 2001 .

[323]  Peter M. Atkinson,et al.  Spatial variation in land cover and choice of spatial resolution for remote sensing , 2004 .

[324]  Thierry Toutin,et al.  Review article: Geometric processing of remote sensing images: models, algorithms and methods , 2004 .

[325]  John S. Iiames,et al.  A Quantitative Assessment of a Combined Spectral and GIS Rule-Based Land-Cover Classification in the Neuse River Basin of North Carolina , 2003 .

[326]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[327]  Jennifer L. Dungan,et al.  Toward a Comprehensive View of Uncertainty in Remote Sensing Analysis , 2006 .

[328]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[329]  Giles M. Foody,et al.  Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes , 2004 .

[330]  N. Emrahoğlu,et al.  Comparison of a new algorithm with the supervised classifications , 2003 .

[331]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[332]  Peter M. Atkinson,et al.  The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean , 2000 .

[333]  Y. Shimabukuro Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images , 1998 .

[334]  Luis O. Jimenez,et al.  Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks , 1999, IEEE Trans. Geosci. Remote. Sens..

[335]  D. Peddle,et al.  Multi-Source Image Classification II: An Empirical Comparison of Evidential Reasoning and Neural Network Approaches , 1994 .

[336]  David A. Landgrebe,et al.  Decision fusion approach for multitemporal classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[337]  Dongmei Chen,et al.  Strategies for Integrating Information from Multiple Spatial Resolutions into Land-Use/Land-Cover Classification Routines , 2003 .

[338]  Paul J. Curran,et al.  Per-field classification: an example using SPOT HRV imagery , 1991 .

[339]  Lalit Kumar,et al.  Mapping Coastal Vegetation Using an Expert System and Hyperspectral Imagery , 2004 .

[340]  Andrew O. Finley,et al.  Delineation of forest/nonforest land use classes using nearest neighbor methods , 2004 .

[341]  Timo Tokola,et al.  Relative Calibration of Multitemporal Landsat Data for Forest Cover Change Detection , 1999 .

[342]  A. Lobo,et al.  Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation , 1996 .

[343]  F. J. Cortijo,et al.  A comparative study of some non-parametric spectral classifiers. Applications to problems with high-overlapping training sets , 1997 .

[344]  Pramod K. Varshney,et al.  Unsupervised classification of hyperspectral data: an ICA mixture model based approach , 2004 .

[345]  R. Fuller,et al.  An integrated approach to land cover classification: An example in the Island of Jersey , 2001 .

[346]  B. Kartikeyan,et al.  Contextual techniques for classification of high and low resolution remote sensing data , 1994 .

[347]  John R. Dymond,et al.  Correction of the topographic effect in remote sensing , 1999, IEEE Trans. Geosci. Remote. Sens..

[348]  Hong Tat Ewe,et al.  A Neural Network Landuse Classifier for SAR Images Using Textural and Fractal Information , 1999 .

[349]  B. Brisco,et al.  Multidate SAR/TM synergism for crop classification in western Canada , 1995 .

[350]  Giles M. Foody,et al.  Hard and soft classifications by a neural network with a non-exhaustively defined set of classes , 2002 .

[351]  Alan H. Strahler,et al.  Maximizing land cover classification accuracies produced by decision trees at continental to global scales , 1999, IEEE Trans. Geosci. Remote. Sens..

[352]  D. Peddle,et al.  Classification of SPOT HRV imagery and texture features , 1990 .

[353]  Russell G. Congalton,et al.  Quality assurance and accuracy assessment of information derived from remotely sensed data , 2001 .

[354]  J. Chassery,et al.  The use of multiresolution analysis and wavelets transform for merging SPOT panchromatic and multisp , 1996 .

[355]  M. A. Shaban,et al.  Evaluation of merging SPOT multispectral and panchromatic data for classification of urban environment , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[356]  D. Yocky Multiresolution wavelet decomposition image merger of landsat thematic mapper and SPOT panchromatic data , 1996 .

[357]  Geoffrey J. Hay,et al.  An object-specific image-texture analysis of H-resolution forest imagery☆ , 1996 .

[358]  Brian L. Markham,et al.  Thematic Mapper bandpass solar exoatmospheric irradiances , 1987 .

[359]  Darrel L. Williams,et al.  The effects of spatial resolution on the classification of Thematic Mapper data , 1985 .

[360]  C. Woodcock,et al.  Theory and methods for accuracy assessment of thematic maps using fuzzy sets , 1994 .

[361]  Paul M. Mather,et al.  Assessment of the effectiveness of support vector machines for hyperspectral data , 2004, Future Gener. Comput. Syst..

[362]  Eugene McGovern,et al.  The radiometric normalization of multitemporal Thematic Mapper imagery of the midlands of Ireland - a case study , 2002 .

[363]  J. Lira,et al.  A supervised contextual classifier based on a region-growth algorithm , 2002 .

[364]  Ana M. Cingolani,et al.  Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units , 2004 .

[365]  R. Congalton A Quantitative Method to Test for Consistency and Correctness in Photointerpretation , 1983 .

[366]  T. Tokola,et al.  Use of topographic correction in Landsat TM-based forest interpretation in Nepal , 2001 .

[367]  Marijke F. Augusteijn,et al.  Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural network classifier , 1995, IEEE Trans. Geosci. Remote. Sens..

[368]  J. Cihlar Land cover mapping of large areas from satellites: Status and research priorities , 2000 .

[369]  S. K. Yen,et al.  Neural classification of SPOT imagery through integration of intensity and fractal information , 1997 .