Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni

Molecular statics is used to study the crack propagation in model nanocrystalline Ni with a mean grain size of 10 nm. It is shown that the crack propagates intergranularly, creating nano-voids ahead of the crack which coalesce gradually. Plasticity in the neighborhood of the crack tip is observed to be mediated by dislocation activity. The sequential emission of partials results in the observation of full dislocations and twinning.

[1]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[2]  Peter M. Derlet,et al.  Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation , 2002 .

[3]  H. V. Swygenhoven,et al.  Atomic mechanism for dislocation emission from nanosized grain boundaries , 2002 .

[4]  Alfredo Caro,et al.  Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .

[5]  H. V. Swygenhoven,et al.  Dislocations emitted from nanocrystalline grain boundaries: nucleation and splitting distance , 2004 .

[6]  H. V. Swygenhoven,et al.  COMPETING PLASTIC DEFORMATION MECHANISMS IN NANOPHASE METALS , 1999 .

[7]  S. Smaalen,et al.  Monoclinic structure of La1-xSrxMnzO₃ (x=0.212,z=0.958) , 2002 .

[8]  J. Molinari,et al.  Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper , 2004 .

[9]  C. Ribbens,et al.  Multiple-dislocation emission from the crack tip in the ductile fracture of Al , 2001 .

[10]  L. Anand,et al.  Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals , 2004 .

[11]  H. V. Swygenhoven,et al.  Plastic behavior of nanophase Ni: A molecular dynamics computer simulation , 1997 .

[12]  P. Derlet,et al.  The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: A molecular dynamics simulation , 2002 .

[13]  Michael F. Ashby,et al.  Engineering materials 1: an introduction to their properties and applications , 1996 .

[14]  Subra Suresh,et al.  Deformation of electrodeposited nanocrystalline nickel , 2003 .

[15]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[16]  W. W. Milligan,et al.  IN SITU STUDIES OF DEFORMATION AND FRACTURE IN NANOPHASE MATERIALS , 1993 .

[17]  H. V. Swygenhoven,et al.  PLASTIC BEHAVIOR OF NANOPHASE METALS STUDIED BY MOLECULAR DYNAMICS , 1998 .

[18]  Johannes Weertman,et al.  In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films , 2003 .

[19]  J. Weertman,et al.  Deformation behavior in nanocrystalline copper , 2001 .

[20]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[21]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[22]  A. Sergueeva,et al.  Superplasticity in Nanocrystalline Ni 3 Al and Ti Alloys , 2000 .

[23]  Ellad B. Tadmor,et al.  Deformation twinning at aluminum crack tips , 2003 .

[24]  M. Victoria,et al.  Movement of interstitial clusters in stress gradients of grain boundaries , 2003 .

[25]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[26]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[27]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .

[28]  H. Van Swygenhoven,et al.  Atomistic simulation of dislocation emission in nanosized grain boundaries , 2003 .

[29]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[30]  H. V. Swygenhoven,et al.  Intergranular fracture in nanocrystalline metals , 2002 .

[31]  H. V. Swygenhoven,et al.  On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation , 2002 .

[32]  D. Farkas Fracture mechanisms of symmetrical tilt grain boundaries , 2000 .

[33]  D. G. Smith,et al.  Book reviewEngineering materials: An introduction to their properties and applications: By Michael F. Ashby and David R.H. Jones. Pp. 278. Pergamon Press, Oxford, 1980. Hard cover £15.00, Flexi cover £4.75 , 1982 .