Average Cost Optimality in Inventory Models With Dynamic Information Delays

Information delays exist when the most recent inventory information available to the Inventory Manager (IM) is dated. In other words, the IM observes only the inventory level that belongs to an earlier period. Such situations are not uncommon, and they arise when it takes a while to process the demand data and pass the results to the IM. In this paper, we establish that the average cost optimal policy is of state-dependent basestock type with respect to the reference inventory position. We show that the optimal base stock depends on the age and the magnitude of the latest observed delay. We illustrate the results by solving an example with delays of 0 and 1, for which we are able to obtain formulas/bounds for the basestock levels.

[1]  H. H. Ippolite Inventory control. , 1960, Hospital management.

[2]  Bing Wu,et al.  Legacy Information Systems: Issues and Directions , 1999, IEEE Softw..

[3]  Suresh P. Sethi,et al.  A Multiperiod Newsvendor Problem with Partially Observed Demand , 2007, Math. Oper. Res..

[4]  S. Sethi,et al.  Markovian demand inventory models , 2010 .

[5]  A. Bensoussan,et al.  On the optimal control of partially observed inventory systems , 2005 .

[6]  Daniel Hernández-Hernández,et al.  Analysis of a risk-sensitive control problem for hidden Markov chains , 1999, IEEE Trans. Autom. Control..

[7]  Suresh P. Sethi,et al.  Partially Observed Inventory Systems: The Case of Rain Checks , 2008, SIAM J. Control. Optim..

[8]  Evan L. Porteus,et al.  Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales , 1999 .

[9]  Suresh P. Sethi,et al.  Optimal Ordering Policies for Stochastic Inventory Problems with Observed Information Delays , 2009 .

[10]  L. Stettner,et al.  Some results on ergodic and adaptive control of hidden Markov models , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[11]  Louiqa Raschid,et al.  Supply chain infrastructures: system integration and information sharing , 2002, SGMD.

[12]  Martin L. Puterman,et al.  The Censored Newsvendor and the Optimal Acquisition of Information , 2002, Oper. Res..

[13]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[14]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[15]  Qing Zhang,et al.  Optimal Production Planning in a Stochastic Manufacturing System with Long-Run Average Cost , 1997 .

[16]  Suresh P. Sethi,et al.  Optimality of Base-Stock and (s, S) Policies for Inventory Problems with Information Delays , 2006 .

[17]  H. Nachtmann,et al.  SUPPLY CHAIN INFORMATION SHARING IN A VENDOR MANAGED INVENTORY PARTNERSHIP , 2004 .

[18]  C. R. Sox,et al.  Adaptive Inventory Control for Nonstationary Demand and Partial Information , 2002, Manag. Sci..

[19]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[20]  Yossi Aviv,et al.  A Partially Observed Markov Decision Process for Dynamic Pricing , 2005, Manag. Sci..

[21]  Ari Arapostathis,et al.  Analysis of an adaptive control scheme for a partially observed controlled Markov chain , 1990 .

[22]  A. Arapostathis,et al.  Convex stochastic control problems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[23]  Annette Clewett,et al.  Network Resource Planning For SAP R/3, BAAN IV, and PeopleSoft: A Guide to Planning Enterprise Applications , 1998 .

[24]  Alain Bensoussan,et al.  On the Optimal Control of Partially Observed Inventory Systems , 2005 .

[25]  Suresh P. Sethi,et al.  A Note on 'The Censored Newsvendor and the Optimal Acquisition of Information' , 2009, Oper. Res..

[26]  Suresh P. Sethi,et al.  Partially Observed Inventory Systems: The Case of Zero-Balance Walk , 2007, SIAM J. Control. Optim..

[27]  M. K. Ghosh,et al.  Discrete-time controlled Markov processes with average cost criterion: a survey , 1993 .

[28]  Examples of optimal control for nonlinear stochastic control problems with partial information , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[29]  Suresh P. Sethi,et al.  Optimal Ordering Policies for Inventory Problems with Dynamic Information Delays , 2009 .