Principal Components of Multifrequency Microwave Land Surface Emissivities. Part I: Estimation under Clear and Precipitating Conditions

AbstractThe upcoming Global Precipitation Measurement mission will provide considerably more overland observations over complex terrain, high-elevation river basins, and cold surfaces, necessitating an improved assessment of the microwave land surface emissivity. Current passive microwave overland rainfall algorithms developed for the Tropical Rainfall Measuring Mission (TRMM) rely upon hydrometeor scattering-induced signatures at high-frequency (85 GHz) brightness temperatures (TBs) and are empirical in nature. A multiyear global database of microwave surface emissivities encompassing a wide range of surface conditions was retrieved from Advanced Microwave Scanning Radiometer for Earth Observing System (EOS; AMSR-E) radiometric clear scenes using companion A-Train [CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Atmospheric Infrared Sounder (AIRS)] data. To account for the correlated emissivity structure, the procedure first derives the TRMM Microwave Imager–li...

[1]  Filipe Aires,et al.  Land Surface Microwave Emissivities over the Globe for a Decade , 2006 .

[2]  Ziad S. Haddad,et al.  Principal Components of Multifrequency Microwave Land Surface Emissivities. Part II: Effects of Previous-Time Precipitation , 2014 .

[3]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[4]  S. Joseph Munchak,et al.  Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders , 2013 .

[5]  Peter Bauer,et al.  Assimilating Satellite Observations of Clouds and Precipitation into NWP Models , 2011 .

[6]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[7]  Filipe Aires,et al.  A Tool to Estimate Land‐Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction , 2011 .

[8]  Simon J. Hook,et al.  Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts , 2009 .

[9]  Mercedes Salvia,et al.  The Effect of Rain and Flooding Events on AMSR-E Signatures of La Plata Basin, Argentina , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  Guosheng Liu,et al.  Possible Misidentification of Rain Type by TRMM PR over Tibetan Plateau , 2007 .

[11]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[12]  Wanchun Chen,et al.  MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Thomas J. Jackson,et al.  WindSat Global Soil Moisture Retrieval and Validation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Pierre-Emmanuel Kirstetter,et al.  A new methodology for rain identification from passive microwave data in the Tropics using neural networks , 2013 .

[16]  R. Marchand,et al.  A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data , 2009 .

[17]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[18]  Benjamin C. Ruston,et al.  Characterization of summertime microwave emissivities from the Special Sensor Microwave Imager over the conterminous United States , 2004 .

[19]  Tristan S. L'Ecuyer,et al.  The Distribution of Rainfall over Oceans from Spaceborne Radars , 2010 .

[20]  Christian Kummerow,et al.  A Physically Based Screen for Precipitation Over Complex Surfaces Using Passive Microwave Observations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Fuzhong Weng,et al.  JCSDA Community Radiative Transfer Model (CRTM) : version 1 , 2006 .

[22]  Filipe Aires,et al.  Snow characterization at a global scale with passive microwave satellite observations , 2006 .

[23]  Christian D. Kummerow,et al.  An Observationally Generated A Priori Database for Microwave Rainfall Retrievals , 2011 .

[24]  Christopher W. O'Dell,et al.  The Successive-Order-of-Interaction Radiative Transfer Model. Part I: Model Development , 2006 .

[25]  松山 洋 「Statistical Methods in the Atmospheric Sciences(2nd edition), International Geophysics Series 91」, Daniel S. Wilks著, Academic Press, 2005年11月, 648頁, $94.95, ISBN978-0-12-751966-1(本だな) , 2010 .

[26]  Gail Skofronick Jackson,et al.  Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures , 2010 .

[27]  Norman C. Grody,et al.  Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz , 2008 .

[28]  Lars Kaleschke,et al.  Surface Emissivity of Arctic Sea Ice at AMSU Window Frequencies , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Fuzhong Weng,et al.  A microwave land emissivity model , 2001 .

[30]  Ralph Ferraro,et al.  Status of the TRMM 2A12 Land Precipitation Algorithm , 2010 .

[31]  Fuzhong Weng,et al.  Validation of the Community Radiative Transfer Model by using CloudSat data , 2008 .

[32]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[33]  Catherine Prigent,et al.  Subsurface emission effects in AMSR-E measurements: Implications for land surface microwave emissivity retrieval , 2011 .

[34]  Grant W. Petty,et al.  Improved Passive Microwave Retrievals of Rain Rate over Land and Ocean. Part I: Algorithm Description , 2013 .

[35]  Christian Kummerow,et al.  A Comparison of Microwave Window Channel Retrieved and Forward-Modeled Emissivities Over the U.S. Southern Great Plains , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Li Li,et al.  An Evaluation of Microwave Land Surface Emissivities Over the Continental United States to Benefit GPM-Era Precipitation Algorithms , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Fuzhong Weng,et al.  Microwave Emission and Scattering From Deserts: Theory Compared With Satellite Measurements , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Catherine Prigent,et al.  Microwave Radiometric Signatures of Different Surface Types in Deserts , 1999 .

[39]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[40]  Marouane Temimi,et al.  Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land , 2012 .

[41]  Catherine Prigent,et al.  Relations between geological characteristics and satellite‐derived infrared and microwave emissivities over deserts in northern Africa and the Arabian Peninsula , 2010 .

[42]  W. Petersen,et al.  Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E) , 2011 .