Darboux transformations via Painlevé analysis

The interesting result obtained in this paper involves using the generalized singular manifold method to determine the Darboux transformations for the equations. It allows us to establish an iterative procedure to obtain multisolitonic solutions. This procedure is closely related to the Hirota -function method. In this paper, we report how to improve the singular manifold method when the equation has more than one Painlev? branch. The singular manifold method generalized in such a way is applied to a pair of equations in 2 + 1 dimensions

[1]  N. V. Ustinov,et al.  Third order spectral problems: reductions and Darboux transformations , 1994 .

[2]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[3]  P. Clarkson The Painleve´ property, a modified Boussinesq equation and a modified Kadomtsev-Petviashvili equation , 1986 .

[4]  P. R. Gordoa,et al.  Modified Singular Manifold Expansion: Application to the Boussinesq and Mikhailov-Shabat Systems , 1993 .

[5]  R. Hirota Classical Boussinesq Equation is a Reduction of the Modified KP Equation , 1985 .

[6]  P. G. Estévez,et al.  A wave equation in 2+1: Painleve analysis and solutions , 1995 .

[7]  P. G. Estévez Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations , 1994 .

[8]  P. G. Estévez The direct method and the singular manifold method for the Fitzhugh-Nagumo equation , 1992 .

[9]  B. Konopelchenko,et al.  On the structure and properties of the singularity manifold equations of the KP hierarchy , 1991 .

[10]  Boris Konopelchenko,et al.  Some new integrable nonlinear evolution equations in 2 + 1 dimensions , 1984 .

[11]  M. Lakshmanan,et al.  Singularity-structure analysis and Hirota's bilinearisation of the Davey-Stewartson equation , 1987 .

[12]  M. Tabor,et al.  A unified approach to Painleve´ expansions , 1987 .

[13]  M. Tabor,et al.  Painlevé expansions for nonintegrable evolution equations , 1989 .

[14]  Andrew Pickering,et al.  Factorization of the 'classical Boussinesq' system , 1994 .

[15]  D. J. Kaup,et al.  Finding Eigenvalue Problems for Solving Nonlinear Evolution Equations , 1975 .

[16]  M. Boiti,et al.  Spectral transform for a two spatial dimension extension of the dispersive long wave equation , 1987 .

[17]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[18]  D. Levi,et al.  Painlevé transcendents : their asymptotics and physical applications , 1992 .

[19]  C. Athorne On the characterization of Moutard transformations , 1993 .

[20]  Boris Konopelchenko,et al.  Introduction to Multidimensional Integrable Equations , 1992 .

[21]  Peter A. Clarkson,et al.  The Painlevé‐Kowalevski and Poly‐Painlevé Tests for Integrability , 1992 .

[22]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[23]  Darboux theorems and factorization of second- and third-order ordinary differential operators , 1991 .

[24]  J. Nimmo,et al.  On the Moutard transformation for integrable partial differential equations , 1991 .

[25]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .

[26]  R. Sachs,et al.  On the integrable variant of the Boussinesq system: Painleve´ property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy , 1988 .

[27]  L. Solombrino,et al.  On the Painlevé property of nonlinear field equations in 2+1 dimensions: The Davey–Stewartson system , 1988 .

[28]  Boris Konopelchenko,et al.  Inverse spectral transform for the modified Kadomtsev-Petviashvili equation , 1992 .

[29]  P. R. Gordoa,et al.  Nonclassical Symmetries and the Singular Manifold Method: Theory and Six Examples , 1995 .