Insights into positron annihilation lifetime spectroscopy by molecular dynamics simulations

Abstract.The relationship between free-volume properties measured from positron annihilation lifetime spectroscopy (PALS) and calculated from molecular dynamics simulations has been investigated for glassy and liquid glycerol in the temperature range 150–400 K. A virtual probing procedure has been developed to retrieve information on the basic free-volume properties of the simulated microstructures, i.e. mean cavity volume and free-volume cavity fractions. Our data leads us to infer on the occurrence of experimentally non-detectable small cavities with mean equivalent radius of 1.8–1.9 Å between 250 and 275 K. The size of these limiting cavities is found to be temperature dependent, being smaller at low temperatures. At high temperatures, above a characteristic PALS temperature Tb2L , the formation of very large cavities is predicted. This finding suggests that, when the dimension of the holes in the system exceeds a given value, the PALS measurements become unable to catch the complete structural information and phenomena of dynamical origin enter into play in the PALS signal decay. The calculated number of cavities is found to be almost independent on the temperature from the glassy up to the liquid phase, thus furnishing a certain support to theoretical models proposed to evaluate the free-volume cavity fractions.

[1]  F. Maurer,et al.  Decrease in o-Ps Formation in Polymers during Positron Lifetime Measurements , 1992 .

[2]  Piero Procacci,et al.  ORAC: A Molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions , 1997 .

[3]  T. Richmond,et al.  Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. , 1984, Journal of molecular biology.

[4]  Thomas M Truskett,et al.  Free volume in the hard sphere liquid , 1998, Molecular Physics.

[5]  A. J. Kovacs,et al.  Transition vitreuse dans les polymères amorphes. Etude phénoménologique , 1964 .

[6]  A. Koll,et al.  Internal rotation in ortho-chloro-substituted biphenyls. Ab initio and molecular dynamics study , 2003 .

[7]  D. Turnbull,et al.  Free‐Volume Model of the Amorphous Phase: Glass Transition , 1961 .

[8]  S. J. Tao Positronium Annihilation in Molecular Substances , 1972 .

[9]  H. Nakanishi,et al.  Positron annihilation in amine‐cured epoxy polymers—pressure dependence , 1990 .

[10]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[11]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[12]  N. N. Medvedev,et al.  The algorithm for three-dimensional Voronoi polyhedra , 1986 .

[13]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[14]  B. Fox,et al.  Construction of Voronoi Polyhedra , 1978 .

[15]  S. A. Stern,et al.  Estimation of the free volume in polymers by means of a Monte Carlo technique , 1989 .

[16]  J. Senker,et al.  The spectral density in simple organic glass formers: Comparison of dielectric and spin-lattice relaxation , 1999 .

[17]  J. Bartoš Positron Annihilation Spectroscopy of Polymers and Rubbers , 2006 .

[18]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. I. The Dependence of the Viscosity of Liquids on Temperature , 1951 .

[19]  A. Jamieson,et al.  Positron Annihilation Lifetime Measurements of Free Volume in Wholly Aromatic Copolyesters and Blends , 1995 .

[20]  Gianni Cardini,et al.  Glycerol condensed phases Part I. A molecular dynamics study , 1999 .

[21]  Eung-Gun Kim,et al.  Atomistic models of amorphous polybutadienes. 2. Poly(1,4-trans-butadiene), poly(1,2-butadiene), and a random copolymer of 1,4-trans-butadiene, 1,4-cis-butadiene, and 1,2-butadiene , 1993 .

[22]  Y. Jean Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers☆ , 1990 .

[23]  F. Maurer,et al.  Free Volume and Tacticity in Polystyrenes , 1999 .

[24]  E. F. Meyer,et al.  Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation , 1989 .

[25]  O. Šauša,et al.  Free-volume microstructure of glycerol and its supercooled liquid-state dynamics , 2001 .

[26]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[27]  G. Consolati,et al.  Free volumes and occupied volumes in oligomeric polypropylenglycols , 2001 .

[28]  A. Schulz Über die Kunststoffe als unterkühlte Flüssigkeiten , 1954 .

[29]  Hernández,et al.  Neutron and light scattering study of supercooled glycerol. , 1994, Physical review letters.

[30]  Ulrich W. Suter,et al.  Space available to small diffusants in polymeric glasses: Analysis of unoccupied space and its connectivity , 1992 .

[31]  A. J. Batschinski,et al.  Untersuchungen Aber die innere Reibnng der Flüssigkeiten. I , 1913 .

[32]  R. Roe,et al.  Molecular dynamics simulation of polymer liquid and glass. 4. Free-volume distribution , 1990 .

[33]  Carlos León,et al.  Nature and properties of the Johari–Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formers , 2001 .

[34]  Piero Procacci,et al.  A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions , 1996 .

[35]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  W. Mattice,et al.  A “phantom bubble” model for the distribution of free volume in polymers , 1999 .

[37]  O. Šauša,et al.  Direct computation of the free volume fraction in amorphous polymers from positron lifetime measurements , 2000 .

[38]  John N. Sherwood,et al.  The temperature dependence of positron lifetimes in solid pivalic acid , 1981 .

[39]  H. Nakanishi,et al.  Positronium formation at free‐volume sites in the amorphous regions of semicrystalline PEEK , 1989 .

[40]  Gianni Cardini,et al.  Glycerol condensed phases Part II.A molecular dynamics study of the conformational structure and hydrogen bonding , 1999 .

[41]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[42]  F. Stillinger,et al.  Statistical geometry of particle packings. I. Algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings , 1997 .

[43]  Tohru Ogawa,et al.  A new algorithm for three-dimensional voronoi tessellation , 1983 .

[44]  G. Grest,et al.  Liquids, Glasses, and the Glass Transition: A Free-Volume Approach , 1981 .

[45]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[46]  O. Šauša,et al.  Free volume factor in supercooled liquid dynamics , 2002 .