Insights into positron annihilation lifetime spectroscopy by molecular dynamics simulations
暂无分享,去创建一个
R. Chelli | G. Cardini | D. Račko | D. Račko | R. Chelli | G. Cardini | J. Bartoš | S. Califano | S. Califano | J. Bartoš
[1] F. Maurer,et al. Decrease in o-Ps Formation in Polymers during Positron Lifetime Measurements , 1992 .
[2] Piero Procacci,et al. ORAC: A Molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions , 1997 .
[3] T. Richmond,et al. Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. , 1984, Journal of molecular biology.
[4] Thomas M Truskett,et al. Free volume in the hard sphere liquid , 1998, Molecular Physics.
[5] A. J. Kovacs,et al. Transition vitreuse dans les polymères amorphes. Etude phénoménologique , 1964 .
[6] A. Koll,et al. Internal rotation in ortho-chloro-substituted biphenyls. Ab initio and molecular dynamics study , 2003 .
[7] D. Turnbull,et al. Free‐Volume Model of the Amorphous Phase: Glass Transition , 1961 .
[8] S. J. Tao. Positronium Annihilation in Molecular Substances , 1972 .
[9] H. Nakanishi,et al. Positron annihilation in amine‐cured epoxy polymers—pressure dependence , 1990 .
[10] Michael L. Connolly,et al. Computation of molecular volume , 1985 .
[11] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[12] N. N. Medvedev,et al. The algorithm for three-dimensional Voronoi polyhedra , 1986 .
[13] T. Darden,et al. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .
[14] B. Fox,et al. Construction of Voronoi Polyhedra , 1978 .
[15] S. A. Stern,et al. Estimation of the free volume in polymers by means of a Monte Carlo technique , 1989 .
[16] J. Senker,et al. The spectral density in simple organic glass formers: Comparison of dielectric and spin-lattice relaxation , 1999 .
[17] J. Bartoš. Positron Annihilation Spectroscopy of Polymers and Rubbers , 2006 .
[18] Arthur K. Doolittle,et al. Studies in Newtonian Flow. I. The Dependence of the Viscosity of Liquids on Temperature , 1951 .
[19] A. Jamieson,et al. Positron Annihilation Lifetime Measurements of Free Volume in Wholly Aromatic Copolyesters and Blends , 1995 .
[20] Gianni Cardini,et al. Glycerol condensed phases Part I. A molecular dynamics study , 1999 .
[21] Eung-Gun Kim,et al. Atomistic models of amorphous polybutadienes. 2. Poly(1,4-trans-butadiene), poly(1,2-butadiene), and a random copolymer of 1,4-trans-butadiene, 1,4-cis-butadiene, and 1,2-butadiene , 1993 .
[22] Y. Jean. Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers☆ , 1990 .
[23] F. Maurer,et al. Free Volume and Tacticity in Polystyrenes , 1999 .
[24] E. F. Meyer,et al. Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation , 1989 .
[25] O. Šauša,et al. Free-volume microstructure of glycerol and its supercooled liquid-state dynamics , 2001 .
[26] P. Flory,et al. Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .
[27] G. Consolati,et al. Free volumes and occupied volumes in oligomeric polypropylenglycols , 2001 .
[28] A. Schulz. Über die Kunststoffe als unterkühlte Flüssigkeiten , 1954 .
[29] Hernández,et al. Neutron and light scattering study of supercooled glycerol. , 1994, Physical review letters.
[30] Ulrich W. Suter,et al. Space available to small diffusants in polymeric glasses: Analysis of unoccupied space and its connectivity , 1992 .
[31] A. J. Batschinski,et al. Untersuchungen Aber die innere Reibnng der Flüssigkeiten. I , 1913 .
[32] R. Roe,et al. Molecular dynamics simulation of polymer liquid and glass. 4. Free-volume distribution , 1990 .
[33] Carlos León,et al. Nature and properties of the Johari–Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formers , 2001 .
[34] Piero Procacci,et al. A Very Fast Molecular Dynamics Method To Simulate Biomolecular Systems with Realistic Electrostatic Interactions , 1996 .
[35] J. L. Finney,et al. Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[36] W. Mattice,et al. A “phantom bubble” model for the distribution of free volume in polymers , 1999 .
[37] O. Šauša,et al. Direct computation of the free volume fraction in amorphous polymers from positron lifetime measurements , 2000 .
[38] John N. Sherwood,et al. The temperature dependence of positron lifetimes in solid pivalic acid , 1981 .
[39] H. Nakanishi,et al. Positronium formation at free‐volume sites in the amorphous regions of semicrystalline PEEK , 1989 .
[40] Gianni Cardini,et al. Glycerol condensed phases Part II.A molecular dynamics study of the conformational structure and hydrogen bonding , 1999 .
[41] M. L. Connolly. Analytical molecular surface calculation , 1983 .
[42] F. Stillinger,et al. Statistical geometry of particle packings. I. Algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings , 1997 .
[43] Tohru Ogawa,et al. A new algorithm for three-dimensional voronoi tessellation , 1983 .
[44] G. Grest,et al. Liquids, Glasses, and the Glass Transition: A Free-Volume Approach , 1981 .
[45] Berend Smit,et al. Understanding Molecular Simulation , 2001 .
[46] O. Šauša,et al. Free volume factor in supercooled liquid dynamics , 2002 .