On the Solution Phase of Direct Methods for Sparse Linear Systems with Multiple Sparse Right-hand Sides
暂无分享,去创建一个
[1] Mario Bebendorf,et al. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .
[2] J. Gilbert. Predicting Structure in Sparse Matrix Computations , 1994 .
[3] Alex Pothen,et al. Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices , 2016, ACM Trans. Graph..
[4] Jianlin Xia,et al. Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..
[5] Joseph W. H. Liu,et al. Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..
[6] Joseph W. H. Liu,et al. Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.
[7] Clément Weisbecker,et al. Improving multifrontal solvers by means of algebraic Block Low-Rank representations. (Amélioration des solveurs multifrontaux à l'aide de représentations algébriques rang-faible par blocs) , 2013 .
[8] Zhenyu Huang,et al. AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids , 2017, SIAM J. Sci. Comput..
[9] Joseph W. H. Liu,et al. On the storage requirement in the out-of-core multifrontal method for sparse factorization , 1986, TOMS.
[10] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .
[11] Dmitry B. Avdeev,et al. Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .
[12] W. Hackbusch,et al. Introduction to Hierarchical Matrices with Applications , 2003 .
[13] Patrick R. Amestoy,et al. Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format , 2018 .
[14] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[15] Alfredo Buttari,et al. On the Complexity of the Block Low-Rank Multifrontal Factorization , 2017, SIAM J. Sci. Comput..
[16] Jennifer A. Scott,et al. A note on the solve phase of a multicore solver , 2010 .
[17] S. Constable. Ten years of marine CSEM for hydrocarbon exploration , 2010 .
[18] Prabhakar Raghavan,et al. Sparse matrix reordering schemes for browsing hypertext , 1996 .
[19] Eric Darve,et al. A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..
[20] D. Rose. A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .
[21] Patrick R. Amestoy,et al. Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea , 2016 .
[22] Patrick R. Amestoy,et al. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver , 2017 .
[23] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[24] Joseph W. H. Liu,et al. The Theory of Elimination Trees for Sparse Unsymmetric Matrices , 2005, SIAM J. Matrix Anal. Appl..
[25] François-Henry Rouet,et al. Parallel Computation of Entries of A-1 , 2015, SIAM J. Sci. Comput..
[26] Tzvetomila Slavova,et al. Parallel triangular solution in the out-of-core multifrontal approach for solving large sparse linear systems. (Résolution triangulaire de systèmes linéaires creux de grande taille dans un contexte parallèle multifrontal et hors-mémoire) , 2009 .
[27] Jean-Yves L'Excellent,et al. Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..
[28] John Beidler,et al. Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.
[29] Svein Ellingsrud,et al. The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .
[30] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[31] Jack J. Dongarra,et al. Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.
[32] Bruce M. Irons,et al. A frontal solution program for finite element analysis , 1970 .
[33] Ichitaro Yamazaki,et al. On Partitioning and Reordering Problems in a Hierarchically Parallel Hybrid Linear Solver , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.
[34] Joseph W. H. Liu,et al. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..
[35] Patrick Amestoy,et al. Analysis of the solution phase of a parallel multifrontal approach , 2010, Parallel Comput..
[36] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[37] Patrick R. Amestoy,et al. Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures , 2019, ACM Trans. Math. Softw..
[38] Jean-Yves L'Excellent,et al. On Computing Inverse Entries of a Sparse Matrix in an Out-of-Core Environment , 2012, SIAM J. Sci. Comput..
[39] Astrid Kornberg Bjørke,et al. 3D Inversion of Marine CSEM Data Using a Fast Finite-difference Time-domain Forward Code And Approximate Hessian-based Optimization , 2008 .
[40] Ralph-Uwe Börner,et al. Numerical Modelling in Geo-Electromagnetics: Advances and Challenges , 2010 .
[41] Iain S. Duff,et al. A Note on the Work Involved in No-fill Sparse Matrix Factorization , 1983 .
[42] Joseph W. H. Liu. The role of elimination trees in sparse factorization , 1990 .
[43] Rita Streich,et al. Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land , 2015, Surveys in Geophysics.
[44] Théo Mary,et al. Block Low-Rank multifrontal solvers: complexity, performance, and scalability. (Solveurs multifrontaux exploitant des blocs de rang faible: complexité, performance et parallélisme) , 2017 .
[45] E. Ng,et al. An E cient Algorithm to Compute Row andColumn Counts for Sparse Cholesky Factorization , 1994 .
[46] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[47] François-Henry Rouet,et al. Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver , 2014, VECPAR.
[48] I. Duff. On the Number of Nonzeros Added when Gaussian Elimination is Performed on Sparse Random Matrices , 1974 .
[49] Robert Schreiber,et al. A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.
[50] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[51] Alfred V. Aho,et al. The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..
[52] Alex Pothen,et al. A Mapping Algorithm for Parallel Sparse Cholesky Factorization , 1993, SIAM J. Sci. Comput..
[53] François-Henry Rouet,et al. Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides. (Problèmes de mémoire et de performance de la factorisation multifrontale parallèle et de la résolution triangulaire à seconds membres creux) , 2012 .
[54] François Pellegrini,et al. Scotch and libScotch 5.0 User's Guide , 2007 .
[55] Patrick Amestoy,et al. An Unsymmetrized Multifrontal LU Factorization , 2000, SIAM J. Matrix Anal. Appl..
[56] Jennifer A. Scott,et al. Reducing the Total Bandwidth of a Sparse Unsymmetric Matrix , 2006, SIAM J. Matrix Anal. Appl..
[57] Patrick R. Amestoy,et al. Efficient use of sparsity by direct solvers applied to 3D controlled-source EM problems , 2019, Computational Geosciences.
[58] E. Cuthill,et al. Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.
[59] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[60] Patrick R. Amestoy,et al. On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers , 2019, SIAM J. Sci. Comput..
[61] T. Wiik,et al. Comparing large-scale 3D Gauss–Newton and BFGS CSEM inversions , 2016 .
[62] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[63] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[64] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[65] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .