On the Solution Phase of Direct Methods for Sparse Linear Systems with Multiple Sparse Right-hand Sides

We consider direct methods to solve sparse linear systems AX = B, where A is a sparse matrix of size n x n with a symmetric structure and X and B are respectively the solution and right-hand side matrices of size n x nrhs. A is usually factorized and decomposed in the form LU, where L and U are respectively a lower and an upper triangular matrix. Then, the solve phase is applied through two triangular resolutions, named respectively the forward and backward substitutions.For some applications, the very large number of right-hand sides (RHS) in B, nrhs >> 1, makes the solve phase the computational bottleneck. However, B is often sparse and its structure exhibits specific characteristics that may be efficiently exploited to reduce this cost. We propose in this thesis to study the impact of the exploitation of this structural sparsity during the solve phase going through its theoretical aspects down to its actual implications on real-life applications.First, we investigate the asymptotic complexity, in the big-O sense, of the forward substitution when exploiting the RHS sparsity in order to assess its efficiency when increasing the problem size. In particular, we study on 2D and 3D regular problems the asymptotic complexity both for traditional full-rank unstructured solvers and for the case when low-rank approximation is exploited. Next, we extend state-of-the-art algorithms on the exploitation of RHS sparsity, and also propose an original approach converging toward the optimal number of operations while preserving performance. Finally, we show the impact of the exploitation of sparsity in a real-life electromagnetism application in geophysics that requires the solution of sparse systems of linear equations with a large number of sparse right-hand sides. We also adapt the parallel algorithms that were designed for the factorization to solve-oriented algorithms.We validate and combine the previous improvements using the parallel solver MUMPS, conclude on the contributions of this thesis and give some perspectives.

[1]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[2]  J. Gilbert Predicting Structure in Sparse Matrix Computations , 1994 .

[3]  Alex Pothen,et al.  Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices , 2016, ACM Trans. Graph..

[4]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[5]  Joseph W. H. Liu,et al.  Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..

[6]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[7]  Clément Weisbecker,et al.  Improving multifrontal solvers by means of algebraic Block Low-Rank representations. (Amélioration des solveurs multifrontaux à l'aide de représentations algébriques rang-faible par blocs) , 2013 .

[8]  Zhenyu Huang,et al.  AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids , 2017, SIAM J. Sci. Comput..

[9]  Joseph W. H. Liu,et al.  On the storage requirement in the out-of-core multifrontal method for sparse factorization , 1986, TOMS.

[10]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[11]  Dmitry B. Avdeev,et al.  Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .

[12]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[13]  Patrick R. Amestoy,et al.  Bridging the gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format , 2018 .

[14]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[15]  Alfredo Buttari,et al.  On the Complexity of the Block Low-Rank Multifrontal Factorization , 2017, SIAM J. Sci. Comput..

[16]  Jennifer A. Scott,et al.  A note on the solve phase of a multicore solver , 2010 .

[17]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[18]  Prabhakar Raghavan,et al.  Sparse matrix reordering schemes for browsing hypertext , 1996 .

[19]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[20]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[21]  Patrick R. Amestoy,et al.  Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea , 2016 .

[22]  Patrick R. Amestoy,et al.  Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver , 2017 .

[23]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[24]  Joseph W. H. Liu,et al.  The Theory of Elimination Trees for Sparse Unsymmetric Matrices , 2005, SIAM J. Matrix Anal. Appl..

[25]  François-Henry Rouet,et al.  Parallel Computation of Entries of A-1 , 2015, SIAM J. Sci. Comput..

[26]  Tzvetomila Slavova,et al.  Parallel triangular solution in the out-of-core multifrontal approach for solving large sparse linear systems. (Résolution triangulaire de systèmes linéaires creux de grande taille dans un contexte parallèle multifrontal et hors-mémoire) , 2009 .

[27]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[28]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[29]  Svein Ellingsrud,et al.  The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .

[30]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[31]  Jack J. Dongarra,et al.  Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.

[32]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[33]  Ichitaro Yamazaki,et al.  On Partitioning and Reordering Problems in a Hierarchically Parallel Hybrid Linear Solver , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[34]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[35]  Patrick Amestoy,et al.  Analysis of the solution phase of a parallel multifrontal approach , 2010, Parallel Comput..

[36]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[37]  Patrick R. Amestoy,et al.  Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures , 2019, ACM Trans. Math. Softw..

[38]  Jean-Yves L'Excellent,et al.  On Computing Inverse Entries of a Sparse Matrix in an Out-of-Core Environment , 2012, SIAM J. Sci. Comput..

[39]  Astrid Kornberg Bjørke,et al.  3D Inversion of Marine CSEM Data Using a Fast Finite-difference Time-domain Forward Code And Approximate Hessian-based Optimization , 2008 .

[40]  Ralph-Uwe Börner,et al.  Numerical Modelling in Geo-Electromagnetics: Advances and Challenges , 2010 .

[41]  Iain S. Duff,et al.  A Note on the Work Involved in No-fill Sparse Matrix Factorization , 1983 .

[42]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[43]  Rita Streich,et al.  Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land , 2015, Surveys in Geophysics.

[44]  Théo Mary,et al.  Block Low-Rank multifrontal solvers: complexity, performance, and scalability. (Solveurs multifrontaux exploitant des blocs de rang faible: complexité, performance et parallélisme) , 2017 .

[45]  E. Ng,et al.  An E cient Algorithm to Compute Row andColumn Counts for Sparse Cholesky Factorization , 1994 .

[46]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[47]  François-Henry Rouet,et al.  Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver , 2014, VECPAR.

[48]  I. Duff On the Number of Nonzeros Added when Gaussian Elimination is Performed on Sparse Random Matrices , 1974 .

[49]  Robert Schreiber,et al.  A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.

[50]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[51]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[52]  Alex Pothen,et al.  A Mapping Algorithm for Parallel Sparse Cholesky Factorization , 1993, SIAM J. Sci. Comput..

[53]  François-Henry Rouet,et al.  Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides. (Problèmes de mémoire et de performance de la factorisation multifrontale parallèle et de la résolution triangulaire à seconds membres creux) , 2012 .

[54]  François Pellegrini,et al.  Scotch and libScotch 5.0 User's Guide , 2007 .

[55]  Patrick Amestoy,et al.  An Unsymmetrized Multifrontal LU Factorization , 2000, SIAM J. Matrix Anal. Appl..

[56]  Jennifer A. Scott,et al.  Reducing the Total Bandwidth of a Sparse Unsymmetric Matrix , 2006, SIAM J. Matrix Anal. Appl..

[57]  Patrick R. Amestoy,et al.  Efficient use of sparsity by direct solvers applied to 3D controlled-source EM problems , 2019, Computational Geosciences.

[58]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[59]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[60]  Patrick R. Amestoy,et al.  On Exploiting Sparsity of Multiple Right-Hand Sides in Sparse Direct Solvers , 2019, SIAM J. Sci. Comput..

[61]  T. Wiik,et al.  Comparing large-scale 3D Gauss–Newton and BFGS CSEM inversions , 2016 .

[62]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[63]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[64]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[65]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .