An approach to aggregation of ordinal information in multi-criteria multi-person decision making using Choquet integral of Fubini type

An algorithm for the selection among n alternatives based on the evaluation of n (distinct) groups of persons according to the same m criteria is described. The evaluation of each person for each criterion is represented by a proportional ordinal 2-tuple and the overall opinion is aggregated by a pair of quantifier-guided ordered weighted averaging (OWA) aggregation and (floating) anchoring value-based ordered weighted averaging (AV-OWA) aggregation operators. An example is provided to illustrate the algorithm. The decision function of the algorithm is shown to be a Choquet integral of the associated function of two variables (corresponding to the two aggregation processes in the algorithm) which can be accomplished alternatively by a Choquet integral of Fubini type.

[1]  D.-F. Li,et al.  A fuzzy closeness approach to fuzzy multi-attribute decision making , 2007, Fuzzy Optim. Decis. Mak..

[2]  Radko Mesiar,et al.  Quantitative weights and aggregation , 2004, IEEE Transactions on Fuzzy Systems.

[3]  Jin-Hsien Wang,et al.  An Approach to Computing With Words Based on Canonical Characteristic Values of Linguistic Labels , 2007, IEEE Transactions on Fuzzy Systems.

[4]  Xin Liu,et al.  A uniform approach of linguistic truth values in sensor evaluation , 2008, Fuzzy Optim. Decis. Mak..

[5]  Mahdi Zarghami,et al.  A fuzzy-stochastic OWA model for robust multi-criteria decision making , 2008, Fuzzy Optim. Decis. Mak..

[6]  Vicenç Torra,et al.  On aggregation operators for ordinal qualitative information , 2000, IEEE Trans. Fuzzy Syst..

[7]  Jin-Hsien Wang,et al.  A new version of 2-tuple fuzzy linguistic representation model for computing with words , 2006, IEEE Trans. Fuzzy Syst..

[8]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[9]  Ronald R. Yager,et al.  Applications and Extensions of OWA Aggregations , 1992, Int. J. Man Mach. Stud..

[10]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[11]  Jongyun Hao,et al.  On weighted P-quantile aggregation , 2008 .

[12]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[13]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[14]  Francisco Herrera,et al.  Managing non-homogeneous information in group decision making , 2005, Eur. J. Oper. Res..

[15]  Ronald R. Yager,et al.  Non-numeric multi-criteria multi-person decision making , 1993 .

[16]  R. Yager Concepts, Theory, and Techniques A NEW METHODOLOGY FOR ORDINAL MULTIOBJECTIVE DECISIONS BASED ON FUZZY SETS , 1981 .

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[18]  Ronald R. Yager,et al.  A General Approach to Criteria Aggregation using Fuzzy Measures , 1993, Int. J. Man Mach. Stud..

[19]  Francisco Herrera,et al.  A 2-tuple fuzzy linguistic representation model for computing with words , 2000, IEEE Trans. Fuzzy Syst..

[20]  Zeshui Xu,et al.  An interactive procedure for linguistic multiple attribute decision making with incomplete weight information , 2007, Fuzzy Optim. Decis. Mak..

[21]  Ronald R. Yager,et al.  Aggregation of ordinal information , 2007, Fuzzy Optim. Decis. Mak..