Biofilms and host response – helpful or harmful

Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non‐obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm‐related infections, both foreign body‐related and non‐foreign body‐related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.

[1]  D. Hartl,et al.  Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells , 2016, Front. Cell. Infect. Microbiol..

[2]  N. Høiby,et al.  Animal models of chronic wound care: the application of biofilms in clinical research , 2016 .

[3]  E. Pretorius,et al.  Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity , 2016, Scientific Reports.

[4]  N. Høiby,et al.  Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice , 2016, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[5]  N. Høiby,et al.  The phagocytic fitness of leucopatches may impact the healing of chronic wounds , 2016, Clinical and experimental immunology.

[6]  A. Schmidtchen,et al.  Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses , 2016, Nature Communications.

[7]  N. Borregaard,et al.  Neutrophil extracellular traps - the dark side of neutrophils. , 2016, The Journal of clinical investigation.

[8]  N. Høiby,et al.  S100A8/A9 is an important host defence mediator in neuropathic foot ulcers in patients with type 2 diabetes mellitus , 2016, Archives of Dermatological Research.

[9]  P. D. de Groot,et al.  Shear-Resistant Binding to von Willebrand Factor Allows Staphylococcus lugdunensis to Adhere to the Cardiac Valves and Initiate Endocarditis. , 2016, The Journal of infectious diseases.

[10]  M. Balaan,et al.  Acute Respiratory Distress Syndrome , 2016, Critical care nursing quarterly.

[11]  E. Bruscia,et al.  Innate and Adaptive Immunity in Cystic Fibrosis. , 2016, Clinics in chest medicine.

[12]  K. Timmis,et al.  Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus , 2016, Journal of bacteriology.

[13]  H. Bundgaard,et al.  Low efficacy of tobramycin in experimental Staphylococcus aureus endocarditis , 2015, European Journal of Clinical Microbiology & Infectious Diseases.

[14]  A. Oliver,et al.  ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. , 2015, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[15]  J. McGuire Regulatory T cells in cystic fibrosis lung disease. More answers, more questions. , 2015, American journal of respiratory and critical care medicine.

[16]  M. Hogardt,et al.  Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. , 2015, American journal of respiratory and critical care medicine.

[17]  Chii‐Ming Lee,et al.  Endocarditis Pathogen Promotes Vegetation Formation by Inducing Intravascular Neutrophil Extracellular Traps Through Activated Platelets , 2015, Circulation.

[18]  M. Kühl,et al.  Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum , 2014, Front. Microbiol..

[19]  G. Drusano,et al.  Interaction of drug- and granulocyte-mediated killing of Pseudomonas aeruginosa in a murine pneumonia model. , 2014, The Journal of infectious diseases.

[20]  T. Scheike,et al.  Polymorphonuclear Leukocytes Restrict Growth of Pseudomonas aeruginosa in the Lungs of Cystic Fibrosis Patients , 2014, Infection and Immunity.

[21]  C. Hansen,et al.  Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen , 2014, Clinical and experimental immunology.

[22]  N. Høiby,et al.  Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model. , 2014, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[23]  S. Bicknell,et al.  T Helper Cell Subsets Specific for Pseudomonas aeruginosa in Healthy Individuals and Patients with Cystic Fibrosis , 2014, PloS one.

[24]  S. Uchiyama,et al.  Increased Neutrophil Extracellular Trap–Mediated Staphylococcus aureus Clearance Through Inhibition of Nuclease Activity by Clindamycin and Immunoglobulin , 2014, The Journal of infectious diseases.

[25]  A. Kharazmi,et al.  Nitrous Oxide Production in Sputum from Cystic Fibrosis Patients with Chronic Pseudomonas aeruginosa Lung Infection , 2014, PloS one.

[26]  R. Nemenoff,et al.  Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. , 2014, Immunity.

[27]  A. Bahar,et al.  Antimicrobial Peptides , 2013, Pharmaceuticals.

[28]  S. Bell,et al.  Sputum neutrophils in cystic fibrosis patients display a reduced respiratory burst. , 2013, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[29]  D. Raoult,et al.  Immunoglobulin G anticardiolipin antibodies and progression to Q fever endocarditis. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[30]  B. Iung,et al.  Prevalence of anti-neutrophil cytoplasmic antibodies in infective endocarditis: An analysis of 109 cases , 2013 .

[31]  C. Akdis,et al.  A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. , 2013, American journal of respiratory and critical care medicine.

[32]  L. Louedec,et al.  Predominant Role of Host Proteases in Myocardial Damage Associated with Infectious Endocarditis Induced by Enterococcus faecalis in a Rat Model , 2013, Infection and Immunity.

[33]  N. Høiby,et al.  Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model , 2013, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[34]  M. Hogardt,et al.  Flagellin Induces Myeloid-Derived Suppressor Cells: Implications for Pseudomonas aeruginosa Infection in Cystic Fibrosis Lung Disease , 2013, The Journal of Immunology.

[35]  S. Sagel,et al.  Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. , 2012, American journal of respiratory and critical care medicine.

[36]  J. Elborn,et al.  Treatment of lung infection in patients with cystic fibrosis: current and future strategies. , 2012, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[37]  N. Al-Attar,et al.  Role of Vegetation-Associated Protease Activity in Valve Destruction in Human Infective Endocarditis , 2012, PLoS ONE.

[38]  K. Tracey,et al.  Alarmins: awaiting a clinical response. , 2012, The Journal of clinical investigation.

[39]  N. Høiby,et al.  Interactions between Polymorphonuclear Leukocytes and Pseudomonas aeruginosa Biofilms on Silicone Implants In Vivo , 2012, Infection and Immunity.

[40]  C. Shun,et al.  Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. , 2012, The Journal of infectious diseases.

[41]  R. Kronmal,et al.  Initial Pseudomonas aeruginosa treatment failure is associated with exacerbations in cystic fibrosis , 2012, Pediatric pulmonology.

[42]  R. Gallo,et al.  Antimicrobial peptides: Old Molecules with New Ideas , 2011, The Journal of investigative dermatology.

[43]  T. Karlsmark,et al.  A Pilot Study to Evaluate the Safety and Clinical Performance of Leucopatch, an Autologous, Additive-Free, Platelet-Rich Fibrin for the Treatment of Recalcitrant Chronic Wounds , 2011, The international journal of lower extremity wounds.

[44]  L. Jørgensen,et al.  S100A8/A9 deficiency in nonhealing venous leg ulcers uncovered by multiplexed antibody microarray profiling , 2011, The British journal of dermatology.

[45]  T. Bjarnsholt,et al.  Success Rate of Split-Thickness Skin Grafting of Chronic Venous Leg Ulcers Depends on the Presence of Pseudomonas aeruginosa: A Retrospective Study , 2011, PloS one.

[46]  T. Tolker-Nielsen,et al.  Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds , 2011, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[47]  S. Molin,et al.  The clinical impact of bacterial biofilms , 2011, International Journal of Oral Science.

[48]  M. Surette,et al.  A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus , 2010, The Journal of Immunology.

[49]  L. Dupont,et al.  Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable Cystic Fibrosis patients , 2010, Respiratory research.

[50]  M. Givskov,et al.  The immune system vs. Pseudomonas aeruginosa biofilms. , 2010, FEMS immunology and medical microbiology.

[51]  A. Watson,et al.  Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis , 2010, Thorax.

[52]  M. Kruhlak,et al.  Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. , 2010, The Journal of infectious diseases.

[53]  G. Drusano,et al.  Impact of Burden on Granulocyte Clearance of Bacteria in a Mouse Thigh Infection Model , 2010, Antimicrobial Agents and Chemotherapy.

[54]  D. Tambourgi,et al.  IgY: A promising antibody for use in immunodiagnostic and in immunotherapy , 2010, Veterinary Immunology and Immunopathology.

[55]  S. Molin,et al.  Augmented effect of early antibiotic treatment in mice with experimental lung infections due to sequentially adapted mucoid strains of Pseudomonas aeruginosa. , 2009, The Journal of antimicrobial chemotherapy.

[56]  M. Parsek,et al.  Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. , 2009, Microbiology.

[57]  A. Kharazmi,et al.  Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis , 2009, Thorax.

[58]  A. Cowburn,et al.  Cystic fibrosis neutrophils have normal intrinsic reactive oxygen species generation , 2009, European Respiratory Journal.

[59]  A. Kharazmi,et al.  Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bactericidal activity. , 2009, Acta pathologica, microbiologica, et immunologica Scandinavica. Section C, Immunology.

[60]  Emily K. Cope,et al.  Flagellum-Mediated Biofilm Defense Mechanisms of Pseudomonas aeruginosa against Host-Derived Lactoferrin , 2009, Infection and Immunity.

[61]  J. Costerton,et al.  Periodontitis: an archetypical biofilm disease. , 2009, Journal of the American Dental Association.

[62]  T. Byrd,et al.  Mycobacterium abscessus Glycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-myo-Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR21 , 2009, The Journal of Immunology.

[63]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[64]  D. Littman,et al.  Plasticity of CD4+ T cell lineage differentiation. , 2009, Immunity.

[65]  S. Diggle,et al.  Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. , 2009, FEMS immunology and medical microbiology.

[66]  N. Høiby,et al.  Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection , 2009, Clinical and experimental immunology.

[67]  K. Malcolm,et al.  Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy , 2009, Journal of medical microbiology.

[68]  J. Fraile,et al.  Endocarditis Caused by Staphylococcus aureus: A Reappraisal of the Epidemiologic, Clinical, and Pathologic Manifestations With Analysis of Factors Determining Outcome , 2009, Medicine.

[69]  N. Høiby,et al.  Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[70]  J. Elborn,et al.  Neutrophils in cystic fibrosis , 2008, Thorax.

[71]  A. Larsson,et al.  Good effect of IgY against Pseudomonas aeruginosa infections in cystic fibrosis patients , 2008, Pediatric pulmonology.

[72]  A. Gaggar,et al.  TLR Expression on Neutrophils at the Pulmonary Site of Infection: TLR1/TLR2-Mediated Up-Regulation of TLR5 Expression in Cystic Fibrosis Lung Disease1 , 2008, The Journal of Immunology.

[73]  S. Kaufmann Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff , 2008, Nature Immunology.

[74]  C. Nathan Metchnikoff's Legacy in 2008 , 2008, Nature Immunology.

[75]  T. Tolker-Nielsen,et al.  Distribution, Organization, and Ecology of Bacteria in Chronic Wounds , 2008, Journal of Clinical Microbiology.

[76]  Á. Zorreguieta,et al.  Characterization of bacterial DNA binding to human neutrophil surface , 2008, Laboratory Investigation.

[77]  M. Stacey,et al.  Induction of MMP‐1, MMP‐3 and TIMP‐1 in normal dermal fibroblasts by chronic venous leg ulcer wound fluid * , 2008, International wound journal.

[78]  D. Littman,et al.  Transcriptional regulation of Th17 cell differentiation. , 2007, Seminars in immunology.

[79]  M. Veldhoen,et al.  Th17 T cells: linking innate and adaptive immunity. , 2007, Seminars in immunology.

[80]  D. Wozniak,et al.  Role of polysaccharides in Pseudomonas aeruginosa biofilm development. , 2007, Current opinion in microbiology.

[81]  B. Wretlind,et al.  Pseudomonas aeruginosa infections are prevented in cystic fibrosis patients by avian antibodies binding Pseudomonas aeruginosa flagellin. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[82]  R. Ramphal,et al.  The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. , 2007, The Journal of infectious diseases.

[83]  C. Harwood,et al.  Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration , 2007, Molecular microbiology.

[84]  F. Locatelli,et al.  Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. , 2007, Blood.

[85]  K. Dybvig,et al.  Biofilms Protect Mycoplasma pulmonis Cells from Lytic Effects of Complement and Gramicidin , 2007, Infection and Immunity.

[86]  P. Williams,et al.  Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. , 2007, Microbiology.

[87]  T. Foster,et al.  Both Complement- and Fibrinogen-Dependent Mechanisms Contribute to Platelet Aggregation Mediated by Staphylococcus aureus Clumping Factor B , 2007, Infection and Immunity.

[88]  R. Kronmal,et al.  Association between pulmonary function and sputum biomarkers in cystic fibrosis. , 2007, American journal of respiratory and critical care medicine.

[89]  Stephen R. Clark,et al.  Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood , 2007, Nature Medicine.

[90]  Stacie A. Brown,et al.  Membrane-Bound Nitrate Reductase Is Required for Anaerobic Growth in Cystic Fibrosis Sputum , 2007, Journal of bacteriology.

[91]  S. Zimmermann,et al.  Induction of Neutrophil Chemotaxis by the Quorum-Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone , 2006, Infection and Immunity.

[92]  J. Bass,et al.  Neutrophil Signaling Pathways Activated by Bacterial DNA Stimulation1 , 2006, The Journal of Immunology.

[93]  A. Kharazmi,et al.  Increased serum concentration of G-CSF in cystic fibrosis patients with chronic Pseudomonas aeruginosa pneumonia. , 2006, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[94]  Mark A Mintun,et al.  Quantifying pulmonary inflammation in cystic fibrosis with positron emission tomography. , 2006, American journal of respiratory and critical care medicine.

[95]  G. Joos,et al.  Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. , 2006, American journal of respiratory cell and molecular biology.

[96]  E. Rietschel,et al.  Oxidative changes of bronchoalveolar proteins in cystic fibrosis. , 2006, Chest.

[97]  R. Fowler,et al.  Subacute and acute infective endocarditis , 2005, The Lancet.

[98]  D. Hassett,et al.  The Exopolysaccharide Alginate Protects Pseudomonas aeruginosa Biofilm Bacteria from IFN-γ-Mediated Macrophage Killing1 , 2005, The Journal of Immunology.

[99]  Massimiliano Mascherini,et al.  Early eradication therapy against Pseudomonas aeruginosa in cystic fibrosis patients , 2005, European Respiratory Journal.

[100]  S. Dower,et al.  The expression and roles of Toll‐like receptors in the biology of the human neutrophil , 2005, Journal of leukocyte biology.

[101]  K. Malcolm,et al.  Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils , 2005, Infection and Immunity.

[102]  A. Kharazmi,et al.  Serum concentrations of GM‐CSF and G‐CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection , 2005, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[103]  S. Nasser,et al.  Antibiotic allergy in cystic fibrosis , 2005, Thorax.

[104]  Patrice François,et al.  Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis , 2005, The Journal of experimental medicine.

[105]  A. Šedivá,et al.  Differential cytokine profile in children with cystic fibrosis. , 2005, Clinical immunology.

[106]  W. Zimmerli,et al.  Prosthetic joint infections: update in diagnosis and treatment. , 2005, Swiss medical weekly.

[107]  S. Molin,et al.  Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. , 2005, Microbiology.

[108]  Robin Patel,et al.  Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. , 2004, The American journal of medicine.

[109]  A. Kharazmi,et al.  Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection , 2004, Clinical and experimental immunology.

[110]  P. Cosette,et al.  Proteomic analysis of agar gel‐entrapped Pseudomonas aeruginosa , 2004, Proteomics.

[111]  J. Davidson,et al.  Migration inhibitory factor‐related protein (MRP)8 and MRP14 are differentially expressed in free‐electron laser and scalpel incisions , 2004, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[112]  P. Gøtzsche,et al.  Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: A marker of therapeutic success?—A 30‐year Cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infection , 2004, Pediatric pulmonology.

[113]  R. Gibson,et al.  Pathophysiology and management of pulmonary infections in cystic fibrosis. , 2003, American journal of respiratory and critical care medicine.

[114]  A. Jesaitis,et al.  Compromised Host Defense on Pseudomonas aeruginosa Biofilms: Characterization of Neutrophil and Biofilm Interactions 1 , 2003, The Journal of Immunology.

[115]  J. Elborn,et al.  Inflammatory markers in cystic fibrosis patients with transmissible Pseudomonas aeruginosa , 2003, European Respiratory Journal.

[116]  L. Adorini,et al.  Cutting Edge: Differential Chemokine Production by Myeloid and Plasmacytoid Dendritic Cells1 , 2002, The Journal of Immunology.

[117]  S. Akira,et al.  Involvement of Toll-like Receptor (TLR) 2 and TLR4 in Cell Activation by Mannuronic Acid Polymers* , 2002, The Journal of Biological Chemistry.

[118]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[119]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[120]  M. Knowles,et al.  Mucus clearance as a primary innate defense mechanism for mammalian airways. , 2002, The Journal of clinical investigation.

[121]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[122]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[123]  A. Kharazmi,et al.  Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1‐dominated cytokine response , 2002, Clinical and experimental immunology.

[124]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[125]  W. Koppenol,et al.  Product distribution of peroxynitrite decay as a function of pH, temperature, and concentration. , 2002, Journal of the American Chemical Society.

[126]  Antonio Lanzavecchia,et al.  Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells , 2001, European journal of immunology.

[127]  I. Thorey,et al.  The Ca2+-binding Proteins S100A8 and S100A9 Are Encoded by Novel Injury-regulated Genes* , 2001, The Journal of Biological Chemistry.

[128]  N. Kadowaki,et al.  Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens , 2001, The Journal of experimental medicine.

[129]  J. Krijgsveld,et al.  Platelet microbicidal activity is an important defense factor against viridans streptococcal endocarditis. , 2001, The Journal of infectious diseases.

[130]  Shizhong Xu,et al.  Genetic control of the rate of wound healing in mice , 2001, Heredity.

[131]  S. Akira,et al.  The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 , 2001, Nature.

[132]  B. Beutler,et al.  The evolution and genetics of innate immunity , 2001, Nature Reviews Genetics.

[133]  G. Pier,et al.  Role of Alginate O Acetylation in Resistance of Mucoid Pseudomonas aeruginosa to Opsonic Phagocytosis , 2001, Infection and Immunity.

[134]  D. Steinberg,et al.  The Interactions of Human Neutrophils with the Constituents of an Experimental Dental Biofilm , 2000, Journal of dental research.

[135]  M. Grisham,et al.  Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum , 2000, Pediatric pulmonology.

[136]  R. Moss,et al.  Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes , 2000, Clinical and experimental immunology.

[137]  N. Klein,et al.  Differential binding of mannose-binding lectin to respiratory pathogens in cystic fibrosis , 2000, The Lancet.

[138]  A. Kharazmi,et al.  The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type , 2000, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[139]  D. Wozniak,et al.  Negative Control of Flagellum Synthesis in Pseudomonas aeruginosa Is Modulated by the Alternative Sigma Factor AlgT (AlgU) , 1999, Journal of bacteriology.

[140]  P. Kalinski,et al.  T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. , 1999, Immunology today.

[141]  S. Molin,et al.  Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. , 1999, Microbiology.

[142]  A. Kharazmi,et al.  Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T‐helper cell response , 1999, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[143]  L. Maltais,et al.  Mouse cell surface antigens: nomenclature and immunophenotyping. , 1998, Journal of immunology.

[144]  R. Steinman,et al.  Dendritic cells and the control of immunity , 1998, Nature.

[145]  B. Rubin,et al.  Nitric oxide metabolites in cystic fibrosis lung disease , 1998, Archives of disease in childhood.

[146]  N. Høiby,et al.  Bacterial Endocarditis at a Tertiary Hospital – How Do We Improve Diagnosis and Delay of Treatment? , 1998, Cardiology.

[147]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[148]  A. Cheung,et al.  Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins , 1997, Infection and immunity.

[149]  M. Yeaman The role of platelets in antimicrobial host defense. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[150]  J. Rygaard,et al.  Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice , 1997, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[151]  J. Hull,et al.  Pulmonary oxidative stress response in young children with cystic fibrosis. , 1997, Thorax.

[152]  N. Greenspan,et al.  Bispecific antibodies overcome the opsonin-receptor mismatch of cystic fibrosis in vitro: restoration of neutrophil-mediated phagocytosis and killing of Pseudomonas aeruginosa. , 1997, Journal of immunology.

[153]  N. Høiby,et al.  Quantitative analysis of the IgG and IgG subclass immune responses to chromosomal Pseudomonas aeruginosa beta-lactamase in serum from patients with cystic fibrosis by western blotting and laser scanning densitometry. , 1996, Thorax.

[154]  M. Ghannoum,et al.  Resistance to platelet microbicidal protein results in increased severity of experimental Candida albicans endocarditis , 1996, Infection and immunity.

[155]  J. Rygaard,et al.  Interferon‐gamma (IFN‐γ) treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats , 1996, Clinical and experimental immunology.

[156]  G. Warr,et al.  IgY: clues to the origins of modern antibodies. , 1995, Immunology today.

[157]  J. M. Gilbert,et al.  Simple method to purify chicken immunoglobulin G. , 1994, Poultry science.

[158]  M. Tvede,et al.  IgG antibody response in bacterial endocarditis using ELISA with multiple antigens , 1994, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[159]  O. Ciofu,et al.  Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center , 1994, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[160]  A. Kharazmi,et al.  Complement activation by Pseudomonas aeruginosa biofilms. , 1993, Microbial pathogenesis.

[161]  A. Kharazmi,et al.  Induction of oxidative burst response in human neutrophils by immune complexes made in vitro of lipopolysaccharide and hyperimmune serum from chronically infected patients , 1993, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[162]  M. Tvede,et al.  Crossed immunoelectrophoresis used for bacteriological diagnosis in patients with endocarditis , 1993, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[163]  M. Otterlei,et al.  Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction , 1993, Infection and immunity.

[164]  N. Høiby,et al.  Pathogenesis of cystic fibrosis , 1993, The Lancet.

[165]  F. Bazzoni,et al.  Interferon-gamma inhibits interleukin-8 production by human polymorphonuclear leucocytes. , 1993, Immunology.

[166]  M. Meyer,et al.  The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis , 1992, Infection and immunity.

[167]  Y. Fukumori,et al.  A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state. , 1992, Journal of biochemistry.

[168]  K. Matsushima,et al.  Stimulation and priming of human neutrophils by interleukin-8: cooperation with tumor necrosis factor and colony-stimulating factors. , 1991, Blood.

[169]  A. Kharazmi,et al.  Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. , 1991, Immunology letters.

[170]  A. Kharazmi,et al.  Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase , 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[171]  A. Kharazmi,et al.  Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response , 1990, Infection and immunity.

[172]  C. Nathan,et al.  Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins , 1989, The Journal of cell biology.

[173]  M. Parmely,et al.  Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity , 1988, Infection and immunity.

[174]  A. Kharazmi,et al.  Modulation of human neutrophil and monocyte chemotaxis and superoxide responses by recombinant TNF-alpha and GM-CSF. , 1988, Immunobiology.

[175]  T. Theander,et al.  Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases , 1988, Infection and immunity.

[176]  A. Kharazmi,et al.  Priming of neutrophils for enhanced oxidative burst by sputum from cystic fibrosis patients with Pseudomonas aeruginosa infection , 1987, European journal of clinical investigation.

[177]  R. Coffman,et al.  Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. , 1986, Journal of immunology.

[178]  K. Botzenhart,et al.  Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis , 1985, Infection and immunity.

[179]  A. Kharazmi,et al.  Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro , 1984, Infection and immunity.

[180]  N. Høiby,et al.  Longitudinal study of immune response to Pseudomonas aeruginosa antigens in cystic fibrosis , 1983, Infection and Immunity.

[181]  T. Herlin,et al.  Energy metabolism of human neutrophils during phagocytosis. , 1982, The Journal of clinical investigation.

[182]  K. Matsushita,et al.  o‐Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa , 1982, FEBS letters.

[183]  M. Høiby,et al.  Activated complement in the sputum from patients with cystic fibrosis. , 1979, Acta pathologica et microbiologica Scandinavica. Section C, Immunology.

[184]  D. Durack Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions , 1975, The Journal of pathology.

[185]  B. Babior,et al.  Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. , 1973, The Journal of clinical investigation.

[186]  D. Durack,et al.  Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. , 1972, British journal of experimental pathology.

[187]  D. Durack,et al.  Experimental Bacterial Endocarditis: II. Survival of Bacteria in Endocardial Vegetations , 1972 .

[188]  Ralph W. Gerard,et al.  THE EXTRA RESPIRATION OF PHAGOCYTOSIS , 1932 .

[189]  V. Rousson,et al.  Prophylaxis of experimental endocarditis with antiplatelet and antithrombin agents: a role for long-term prevention of infective endocarditis in humans? , 2015, The Journal of infectious diseases.

[190]  K. Holmstrøm,et al.  Characteristics of an autologous leukocyte and platelet‐rich fibrin patch intended for the treatment of recalcitrant wounds , 2013, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[191]  Martin Stotz,et al.  Lactate in cystic fibrosis sputum. , 2011, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[192]  G. Hänsch,et al.  Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. , 2010, The International journal of artificial organs.

[193]  K. Krogfelt,et al.  Why chronic wounds will not heal: a novel hypothesis , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[194]  J. Calhoun,et al.  Osteomyelitis and the role of biofilms in chronic infection. , 2008, FEMS immunology and medical microbiology.

[195]  D. Reinhardt,et al.  Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. , 2006, The Journal of allergy and clinical immunology.

[196]  D. Reinhardt,et al.  Pulmonary TH2 response in Pseudomonas aeruginosa–infected patients with cystic fibrosis , 2006 .

[197]  S. Rennard,et al.  Pathogenesis of COPD. , 2003, Clinical cornerstone.

[198]  A. Kharazmi,et al.  Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. , 2001, Microbes and infection.

[199]  E. Bouza,et al.  Infections caused by Gram-positive bacteria: situation and challenges of treatment. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[200]  C Caux,et al.  Immunobiology of dendritic cells. , 2000, Annual review of immunology.

[201]  S. Padmaja,et al.  The reaction of no with superoxide. , 1993, Free radical research communications.

[202]  S. Pedersen,et al.  Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. , 1992, APMIS. Supplementum.

[203]  M. Terpenning Infective endocarditis. , 1992, Clinics in geriatric medicine.

[204]  M. Yamada,et al.  Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. A KCN-insensitive alternate oxidase chain and its energetics. , 1983, Journal of biochemistry.

[205]  N. Høiby Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. , 1977, Acta pathologica et microbiologica Scandinavica. Supplement.