Effect of Reaction Mechanism in Shock-Induced Combustion Simulations

[1]  W. Shyy,et al.  Evaluation of source term treatments for high-speed reacting flows , 1998 .

[2]  James K. Clutter,et al.  Computation of high-speed reacting flows , 1997 .

[3]  R. J. Duchovic,et al.  Conventional transition state theory/Rice–Ramsperger–Kassel–Marcus theory calculations of thermal termolecular rate coefficients for H(D)+O2+M , 1996 .

[4]  Ten-See Wang,et al.  Investigation of chemical kinetics integration algorithms for reacting flows , 1995 .

[5]  P. M. Rubins,et al.  Review of shock-induced supersonic combustion research and hypersonic applications , 1994 .

[6]  Myles Sussman,et al.  A computational study of unsteady shock-induced combustion of hydrogen-air mixtures , 1994 .

[7]  Akiko Matsuo,et al.  Numerical investigation of oscillatory instability in shock-induced combustion around a blunt body , 1993 .

[8]  Huan-Min Shang,et al.  Numerical analysis of complex internal and external viscous flows with a second-order pressure-based method , 1993 .

[9]  Gregory J. Wilson,et al.  Computation of unsteady shock-induced combustion using logarithmic species conservation equations , 1993 .

[10]  Kozo Fujii,et al.  Flow features of shock-induced combustion around projectile traveling at hypervelocities , 1993 .

[11]  J. Ahuja,et al.  Numerical simulation of shock-induced combustion in a superdetonative hydrogen-air system , 1993 .

[12]  J. Shuen,et al.  Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations , 1992 .

[13]  Graham V. Candler,et al.  Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium , 1991 .

[14]  Adam P. Bruckner,et al.  Numerical simulation of hypervelocity projectiles in detonable gases , 1991 .

[15]  Gregory J. Wilson,et al.  Modeling supersonic combustion using a fully-implicit numerical method , 1990 .

[16]  Meng-Sing Liou,et al.  Splitting of inviscid fluxes for real gases , 1990 .

[17]  Seung-Ho Lee,et al.  Calculation of nonequilibrium hydrogen-air reactions with implicit flux vector splitting method , 1989 .

[18]  H. C. Yee,et al.  Semi-implicit and fully implicit shock-capturing methods for nonequilibrium flows , 1989 .

[19]  C. Rhie,et al.  Numerical analysis of reacting flows using finite rate chemistry models , 1989 .

[20]  C. J. Jachimowski,et al.  An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion , 1988 .

[21]  R. C. Rogers,et al.  A detailed numerical model of a supersonic reacting mixing layer , 1986 .

[22]  J. Troe,et al.  High-pressure falloff curves and specific rate constants for the reactions atomic hydrogen + molecular oxygen .dblharw. perhydroxyl .dblharw. hydroxyl + atomic oxygen , 1985 .

[23]  R. Maccormack Current status of numerical solutions of the Navier-Stokes equations , 1985 .

[24]  S. Osher,et al.  A new class of high accuracy TVD schemes for hyperbolic conservation laws. [Total Variation Diminishing] , 1985 .

[25]  James C. Keck,et al.  Laminar burning velocities in stoichiometric hydrogen and hydrogenhydrocarbon gas mixtures , 1984 .

[26]  Jürgen Warnatz,et al.  Concentration-, Pressure-, and Temperature-Dependence of the Flame Velocity in Hydrogen-Oxygen-Nitrogen Mixtures , 1981 .

[27]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[28]  C. J. Schexnayder,et al.  Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames , 1980 .

[29]  G. Moretti A new technique for the numerical analysis of nonequilibrium flows , 1965 .

[30]  Kozo Fujii,et al.  First damkohler parameter for prediction and classification of unsteady combustions around hypersonic projectiles , 1996 .

[31]  K. Fujii,et al.  Computational study of large-disturbance oscillations in unsteady supersonic combustion around projectiles , 1995 .

[32]  Myles A. Sussman,et al.  Source term evaluation for combustion modeling , 1993 .

[33]  J. Philip Drummond,et al.  Supersonic reacting internal flowfields , 1991 .

[34]  Jürgen Troe,et al.  Rate Coefficients of Thermal Dissociation, Isomerization, and Recombination Reactions , 1984 .

[35]  J. Warnatz Rate Coefficients in the C/H/O System , 1984 .

[36]  M. W. Slack,et al.  Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times , 1977 .

[37]  H. Lehr,et al.  Experiments on Shock-Induced Combustion , 1972 .