Fundamental Constraints on the Evolution of Neurons

[1]  R. Keynes,et al.  The movements of labelled ions in mammalian non‐myelinated nerve fibres. , 1965, The Journal of physiology.

[2]  A. Bulloch,et al.  Synaptic plasticity in the molluscan peripheral nervous system: physiology and role for peptides , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  R. Llinás,et al.  Transmission by presynaptic spike-like depolarization in the squid giant synapse. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Alonso,et al.  Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. , 1998, Journal of neurophysiology.

[5]  E. Bois-Reymond Untersuchungen über thierische Elektricität , 1848 .

[6]  Jan Karbowski,et al.  Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size , 2009, Journal of Computational Neuroscience.

[7]  G. Stuart,et al.  State and location dependence of action potential metabolic cost in cortical pyramidal neurons , 2012, Nature Neuroscience.

[8]  B. Chait,et al.  Structural conservation in prokaryotic and eukaryotic potassium channels. , 1998, Science.

[9]  Christof Koch,et al.  How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate , 1999, Nature Neuroscience.

[10]  A. Aldo Faisal,et al.  Axonal Noise as a Source of Synaptic Variability , 2014, PLoS Comput. Biol..

[11]  T. Basarsky,et al.  Presynaptic spike broadening reduces junctional potential amplitude , 1989, Nature.

[12]  M. Abeles,et al.  Transmission of information by the axon: II. The channel capacity , 2004, Biological Cybernetics.

[13]  D. Heck,et al.  Cerebellar structure and function: making sense of parallel fibers. , 2002, Human movement science.

[14]  W. Rushton A theory of the effects of fibre size in medullated nerve , 1951, The Journal of physiology.

[15]  M. Abeles,et al.  Transmission of information by the axon: I. Noise and memory in the myelinated nerve fiber of the frog , 1975, Biological Cybernetics.

[16]  J. Skoyles Skeletal muscle-induced hypoglycemia risk, not life history energy trade-off, links high child brain glucose use to slow body growth , 2014, Proceedings of the National Academy of Sciences.

[17]  B. Hille,et al.  Ionic channels in nerve membranes. , 1970, Progress in biophysics and molecular biology.

[18]  Norio Matsuki,et al.  Action-Potential Modulation During Axonal Conduction , 2011, Science.

[19]  R. Tsien,et al.  Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  T. Matheson,et al.  Coordinated righting behaviour in locusts. , 2001, The Journal of experimental biology.

[21]  R. Small,et al.  Components of the plasma membrane of growing axons. I. Size and distribution of intramembrane particles , 1984, The Journal of cell biology.

[22]  D. McCormick,et al.  Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential , 2006, Nature.

[23]  Jörg R. P. Geiger,et al.  Energy-Efficient Action Potentials in Hippocampal Mossy Fibers , 2009, Science.

[24]  D. Debanne Information processing in the axon , 2004, Nature Reviews Neuroscience.

[25]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  R. Williams,et al.  An analysis of axon caliber within the optic nerve of the cat: evidence of size groupings and regional organization , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Francisco Aboitiz,et al.  Species Differences and Similarities in the Fine Structure of the Mammalian Corpus callosum , 2001, Brain, Behavior and Evolution.

[28]  Johannes J. Letzkus,et al.  Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy , 2007, Neuron.

[29]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[30]  D. M. Easton Garfish Olfactory Nerve: Easily Accessible Source of Numerous Long, Homogeneous, Nonmyelinated Axons , 1971, Science.

[31]  D. Debanne,et al.  Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus , 1997, Nature.

[32]  Takuya Sasaki,et al.  The axon as a unique computational unit in neurons , 2013, Neuroscience Research.

[33]  S. Laughlin,et al.  Ion-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring , 2005, Current Biology.

[34]  G. Augustine How does calcium trigger neurotransmitter release? , 2001, Current Opinion in Neurobiology.

[35]  Patrick R Hof,et al.  Functional Trade-Offs in White Matter Axonal Scaling , 2008, The Journal of Neuroscience.

[36]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[37]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[38]  Christof Koch,et al.  Subthreshold Voltage Noise Due to Channel Fluctuations in Active Neuronal Membranes , 2000, Journal of Computational Neuroscience.

[39]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  T. J. Sejnowski,et al.  An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons , 1989, Biological Cybernetics.

[41]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.

[42]  D. Tank,et al.  Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  W. Woźniak,et al.  Fine structure and myelination of the developing human vagus nerve. , 1981, Acta anatomica.

[44]  B Sakmann,et al.  Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  William T Newsome,et al.  Is there a signal in the noise? , 1995, Current Opinion in Neurobiology.

[46]  A. Aldo Faisal,et al.  Stochastic Simulations on the Reliability of Action Potential Propagation in Thin Axons , 2007, PLoS Comput. Biol..

[47]  Jinhyung Kim,et al.  Kv4 potassium channel subunits control action potential repolarization and frequency‐dependent broadening in rat hippocampal CA1 pyramidal neurones , 2005, The Journal of physiology.

[48]  R W Guillery,et al.  Connections of higher order visual relays in the thalamus: A study of corticothalamic pathways in cats , 2001, The Journal of comparative neurology.

[49]  Fahad Sultan,et al.  Exploring a critical parameter of timing in the mouse cerebellar microcircuitry: the parallel fiber diameter , 2000, Neuroscience Letters.

[50]  G. Augustine,et al.  Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. , 1990, The Journal of physiology.

[51]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[52]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[53]  J. White,et al.  Channel noise in neurons , 2000, Trends in Neurosciences.

[54]  Mikko Vähäsöyrinki,et al.  The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors , 2003, Nature.

[55]  B M Salzberg,et al.  Action potentials and frequency-dependent secretion in the mouse neurohypophysis. , 1986, Neuroendocrinology.

[56]  W G Regehr,et al.  Control of Neurotransmitter Release by Presynaptic Waveform at the Granule Cell to Purkinje Cell Synapse , 1997, The Journal of Neuroscience.

[57]  Jeremy E. Niven,et al.  Miniaturization of Nervous Systems and Neurons , 2012, Current Biology.

[58]  E. Kandel,et al.  Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Bender,et al.  Information Transmission in Cercal Giant Interneurons Is Unaffected by Axonal Conduction Noise , 2012, PloS one.

[60]  David Attwell,et al.  The Energetics of CNS White Matter , 2012, The Journal of Neuroscience.

[61]  M. Bennett,et al.  Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. , 1972, Nature: New biology.

[62]  Peter Sterling,et al.  Functional architecture of primate cone and rod axons , 1998, Vision Research.

[63]  G. Shepherd,et al.  Three-Dimensional Structure and Composition of CA3→CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization , 1998, The Journal of Neuroscience.

[64]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[65]  Simon B. Laughlin,et al.  Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates , 2010, PLoS Comput. Biol..

[66]  E. D. Adrian,et al.  The action of light on the eye , 1927 .

[67]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.