Validation of an overall model describing the effect of three environmental factors on the apparent D-value of Bacillus cereus spores.

[1]  M. J. Ocio,et al.  Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. , 2002, International journal of food microbiology.

[2]  I. Leguerinel,et al.  Effect of Water Activities of Heating and Recovery Media on Apparent Heat Resistance of Bacillus cereusSpores , 2001, Applied and Environmental Microbiology.

[3]  P. Mafart Taking injuries of surviving bacteria into account for optimising heat treatments. , 2000, International journal of food microbiology.

[4]  I. Leguerinel,et al.  Modelling the overall effect of pH on the apparent heat resistance of Bacillus cereus spores. , 1999, International journal of food microbiology.

[5]  I. Leguerinel,et al.  Model for Combined Effects of Temperature, pH and Water Activity on Thermal Inactivation of Bacillus cereus Spores , 1998 .

[6]  P. Fernández,et al.  Mathematical model for the combined effect of temperature and pH on the thermal resistance of Bacillus stearothermophilus and Clostridium sporogenes spores. , 1996, International journal of food microbiology.

[7]  K. Davey,et al.  Thermal inactivation of bacteria—a new predictive model for the combined effect of three environmental factors: temperature, pH and water activity , 1996 .

[8]  H. Kessler,et al.  Heat Resistance of Bacillus cereus Spores Located between Seals and Seal Surfaces. , 1995, Journal of food protection.

[9]  C. Mohácsi-Farkas,et al.  Mathematical modelling of the combined effect of water activity, pH and redox potential on the heat destruction. , 1994, International journal of food microbiology.

[10]  N. N. Potter,et al.  Effects of Organic Acids on Thermal Inactivation of Bacillus stearothermophilus and Bacillus coagulans Spores in Frankfurter Emulsion Slurry. , 1988, Journal of food protection.

[11]  F. Feeherry,et al.  Thermal inactivation and injury of Bacillus stearothermophilus spores , 1987, Applied and environmental microbiology.

[12]  J. Scholefield,et al.  Evaluation of recovery media for heated spores of Bacillus stearothermophilus , 1986 .

[13]  T. Tsuchido,et al.  Viability of heat-stressed cells of micro-organisms as influenced by pre-incubation and post-incubation temperatures. , 1982, The Journal of applied bacteriology.

[14]  S. H. Lin,et al.  The effect of pH on continuous high‐temperature/short‐time sterilization of liquid foods , 1978 .

[15]  W. G. Murrell,et al.  The heat resistance of bacterial spores at various water activities. , 1966, Journal of general microbiology.

[16]  N. D. Harris The Influence of the Recovery Medium and the Incubation Temperature on the Survival of Damaged Bacteria , 1963 .

[17]  J. R. Esty,et al.  The heat resistance of the spores of B. botulinus and allied anaerobes. XI , 1922 .

[18]  J. R. Esty,et al.  The Thermal Death Point in Relation to Time of Typical Thermophilic Organisms , 1920 .

[19]  Olivier Couvert Prise en compte de l'influence du pH dans l'optimisation des traitements thermiques , 2002 .

[20]  Khan,et al.  Arachidonic acid metabolites alter G protein-mediated signal transduction in heart. Effects on muscarinic K+ channels , 1990, The Journal of general physiology.

[21]  J. Gros,et al.  Prédiction de l'activité de l'eau, des températures d'ébullition et de congélation de solutions aqueuses de sucres par un modèle UNIFAC , 1992 .

[22]  B. G. Snygg,et al.  HEAT RESISTANCE OF Bacillus stearothermophilus SPORES AT DIFFERENT WATER ACTIVITIES , 1977 .