Two new fungal genera (Diaporthales) found on Dipterocarpaceae in Thailand

Diaporthales is a species-rich order of fungi that includes endophytes, saprobes, and pathogens associated with forest plants and crops. They may also occur as parasites or secondary invaders of plant tissues injured or infected by other organisms or inhabit living animal and human tissues, as well as soil. Meanwhile, some severe pathogens wipe out large-scale cultivations of profitable crops, timber monocultures, and forests. Based on morphological and phylogenetic analyses of combined ITS, LSU, tef1-α, and rpb2 sequence data, generated using maximum likelihood (ML), maximum parsimony (MP), and MrBayes (BI), we introduce two new genera of Diaporthales found in Dipterocarpaceae in Thailand, namely Pulvinaticonidioma and Subellipsoidispora. Pulvinaticonidioma is characterized by solitary, subglobose, pycnidial, unilocular conidiomata with the internal layers convex and pulvinate at the base; hyaline, unbranched, septate conidiophores; hyaline, phialidic, cylindrical to ampulliform, determinate conidiogenous cells and hyaline, cylindrical, straight, unicellular, and aseptate conidia with obtuse ends. Subellipsoidispora has clavate to broadly fusoid, short pedicellate asci with an indistinct J- apical ring; biturbinate to subellipsoidal, hyaline to pale brown, smooth, guttulate ascospores that are 1-septate and slightly constricted at the septa. Detailed morphological and phylogenetic comparisons of these two new genera are provided in this study.

[1]  S. Stephenson,et al.  A new species Pseudoplagiostoma dipterocarpicola (Pseudoplagiostomataceae, Diaporthales) found in northern Thailand on members of the Dipterocarpaceae , 2022, Phytotaxa.

[2]  J. Kumla,et al.  The numbers of fungi: are the most speciose genera truly diverse? , 2022, Fungal Diversity.

[3]  C. Rosa,et al.  Diversity and antimicrobial activity of culturable endophytic fungi associated with the neotropical ethnomedicinal plants Copaifera langsdorffii and Copaifera pubiflora , 2021 .

[4]  K. Hyde,et al.  What are fungal species and how to delineate them? , 2021, Fungal Diversity.

[5]  K. Hyde,et al.  Integrative approaches for species delimitation in Ascomycota , 2021, Fungal Diversity.

[6]  Achala R. Rathnayaka,et al.  Hyaloterminalis, a novel genus of Coryneaceae in order Diaporthales  , 2020 .

[7]  S. Lumyong,et al.  The numbers of fungi: is the descriptive curve flattening? , 2020, Fungal Diversity.

[8]  K. Hyde,et al.  Taxonomy and phylogeny of Leptosillia cordylinea sp. nov. from China , 2020 .

[9]  P. Crous,et al.  Reevaluating Cryphonectriaceae and allied families in Diaporthales , 2020, Mycologia.

[10]  Guangxi Wu,et al.  The genome of the butternut canker pathogen, Ophiognomonia clavigignenti-juglandacearum shows an elevated number of genes associated with secondary metabolism and protection from host resistance responses in comparison with other members of the Diaporthales , 2019, bioRxiv.

[11]  X. Fan,et al.  Cytospora (Diaporthales) in China , 2019, Persoonia.

[12]  D. Pinho,et al.  Phylogenetic relationships of Phaeochorella parinarii and recognition of a new family, Phaeochorellaceae (Diaporthales) , 2019, Mycologia.

[13]  P. Crous,et al.  New and Interesting Fungi. 2 , 2019, Fungal systematics and evolution.

[14]  K. Hyde,et al.  Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology , 2018, Fungal Diversity.

[15]  L. Rosa,et al.  Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. , 2018, Canadian journal of microbiology.

[16]  X. Fan,et al.  Families and genera of diaporthalean fungi associated with canker and dieback of tree hosts , 2018, Persoonia.

[17]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[18]  K. Hyde,et al.  Melansporellaceae: a novel family of Diaporthales (Ascomycota). , 2017 .

[19]  M. Stadler,et al.  The genus Diaporthe: a rich source of diverse and bioactive metabolites , 2017, Mycological Progress.

[20]  K. Hyde,et al.  Families of Diaporthales based on morphological and phylogenetic evidence , 2017, Studies in mycology.

[21]  L. Castlebury,et al.  Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales) , 2017, Persoonia.

[22]  P. Crous,et al.  Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella and Schizoparme , 2016, Studies in mycology.

[23]  K. Hyde,et al.  Families of Sordariomycetes , 2016, Fungal Diversity.

[24]  Y. Ju,et al.  Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales) , 2016, IMA fungus.

[25]  J. Kumla,et al.  Pseudoplagiostoma dipterocarpi sp. nov., a new endophytic fungus from Thailand , 2016 .

[26]  F. Selçuk,et al.  The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts , 2015, Fungal Diversity.

[27]  E. Jones,et al.  Tirisporellaceae, a New Family in the Order Diaporthales (Sordariomycetes, Ascomycota) , 2015 .

[28]  P. Crous,et al.  Phaeoacremonium: from esca disease to phaeohyphomycosis. , 2015, Fungal biology.

[29]  P. Kirk,et al.  Towards a natural classification and backbone tree for Sordariomycetes , 2015, Fungal Diversity.

[30]  C. Decock,et al.  Cytospora species from Populus and Salix in China with C. davidiana sp. nov. , 2015, Fungal biology.

[31]  Tian Cheng-ming,et al.  Cytospora from Salix in northern China. , 2015 .

[32]  H. Voglmayr,et al.  Stilbosporaceae resurrected: generic reclassification and speciation , 2014, Persoonia.

[33]  Hongye Li,et al.  Diaporthe species occurring on citrus in China , 2013, Fungal Diversity.

[34]  A. Rossman,et al.  Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales) , 2012, Fungal Diversity.

[35]  P. Crous,et al.  Genera of diaporthalean coelomycetes associated with leaf spots of tree hosts , 2012, Persoonia.

[36]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[37]  M. Wingfield,et al.  New records of the Cryphonectriaceae from southern Africa including Latruncellus aurorae gen. sp. nov. , 2011, Mycologia.

[38]  Gaurav Vaidya,et al.  SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information , 2011, Cladistics : the international journal of the Willi Hennig Society.

[39]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[40]  K. Hyde,et al.  Re-evaluation of Cryptosporiopsis eucalypti and Cryptosporiopsis-like species occurring on Eucalyptus leaves , 2010, Fungal Diversity.

[41]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[42]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[43]  A. Rossman,et al.  A review of the phylogeny and biology of the Diaporthales , 2007, Mycoscience.

[44]  M. Wingfield,et al.  Cryphonectriaceae (Diaporthales), a new family including Cryphonectria, Chrysoporthe, Endothia and allied genera. , 2006, Mycologia.

[45]  L. Vasilyeva,et al.  A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences , 2002, Mycologia.

[46]  K. Shadan,et al.  Available Online at , 2002 .

[47]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[48]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[49]  Ignazio Carbone,et al.  A method for designing primer sets for speciation studies in filamentous ascomycetes , 1999 .

[50]  E. Boa,et al.  Ainsworth and Bisby's Dictionary of the Fungi , 1998 .

[51]  R. Ploetz,et al.  Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  David L. Hawksworth,et al.  Ainsworth and Bisby's Dictionary of the Fungi, 8th edn. , 1996 .

[53]  J. Bull,et al.  An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .

[54]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[55]  M. E. Barr,et al.  The Diaporthales in North America : with emphasis on Gnomonia and its segregates , 1979 .

[56]  J. Kumla,et al.  Outline of Fungi and fungus-like taxa – 2021 , 2022, Mycosphere.

[57]  R. Jeewon,et al.  Ten important forest fungal pathogens: a review on their emergence and biology , 2022, Mycosphere.

[58]  AJOM new records and collections of fungi: 101-150 , 2021, Asian journal of Mycology.

[59]  N. Chaiwan https://gmsmicrofungi.org: an online database providing updated information of microfungi in the Greater Mekong Subregion , 2021, Mycosphere.

[60]  J. K. Liu,et al.  Outline of Fungi and fungus-like taxa , 2020 .

[61]  K. Hyde Refined families of Sordariomycetes , 2020 .

[62]  A. Dissanayake Applied aspects of methods to infer phylogenetic relationships amongst fungi , 2020 .

[63]  S. F. Chen,et al.  A new genus of Cryphonectriaceae isolated from Lagerstroemia speciosa in southern China , 2018 .

[64]  S. Prospero,et al.  Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. , 2018, Molecular plant pathology.

[65]  X. Fan,et al.  Diaporthosporellaceae, a novel family of diaporthales (Sordariomycetes, Ascomycota). , 2018 .

[66]  P. Crous,et al.  Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium Anamorphs , 2006 .

[67]  P. Crous,et al.  New genera in the Calosphaeriales: Togniniella and its anamorph Phaeocrella, and Calosphaeriophora as anamorph of Calosphaeria , 2004 .

[68]  M. Cubeta Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene , 1991 .

[69]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .