The agricultural ethics of biofuels: climate ethics and mitigation arguments

An environmental, climate mitigation rationale for research and development (R&D) on liquid transportation fuels derived from plants emerged among many scientists and engineers during the last decade. However, between 2006 and 2010, this climate ethic for pursuing biofuel became politically entangled and conceptually confused with rationales for encouraging greater use of plant-based ethanol that were both unconnected to climate ethics and potentially in conflict with the value-commitments providing a mitigation-oriented reason to promote and develop new and expanded sources of biofuel. I argue that the conceptual construct of technological trajectories provides a fecund approach to the ethical evaluation of R&D strategies in the case of plant-based liquid transportation fuels. The idea of a trajectory has a current use in the literature of science studies and aptly summarizes a number of themes that are critical to the evaluation of tools and techniques whose future shape, design, applications and potential consequences are necessarily somewhat speculative. In the case of biofuels, it is the imagined future trajectory that provides the basis for resistance to an emerging technology, rather than the present-day technical capabilities and the unexpected consequences of biofuel development.ZusammenfassungDie Erforschung und Entwicklung von Biokraftstoffen war im letzten Jahrzehnt maßgeblich durch Umwelt- und Klimaschutzziele motiviert. Gleichwohl gerieten diese Ziele in den letzten Jahren zunehmend in Konflikt mit anderen Initiativen, die die breite Nutzung von Äthanol aus Ackerpflanzen propagierten. Letztere scheinen bei genauer Betrachtung den Emissionsminderungszielen zum Klimaschutz auf konzeptioneller, ethischer und politischer Ebene zu widersprechen oder den Zielen zumindest nicht förderlich zu sein. Vor diesem Hintergrund wird ein Trajektorien-Modell zur technischen Entwicklung von Biokraftstoffen vorgeschlagen, das die ethische Evaluierung entsprechender Forschungsstrategien erlaubt. Das Prinzip der Pfadanalyse wird derzeit auch in der Fachliteratur diskutiert. Das Konzept sieht sich dabei vor der Herausforderung, eine Vielzahl kritischer Elemente und Prozesse zu evaluieren, deren zukünftige Entwicklung und Folgen notwendigerweise unsicher sind. Im Fall der Biokraftstoffe hängen Entscheidungen für entsprechende Entwicklungen mehr von ihren Zukunftsperspektiven als vom derzeitigen Stand der Technik und deren Nebenfolgen ab.RésuméPendant la décennie écoulée, l’exploration et la mise au point de biocarburants furent notamment dictées par les objectifs que l’on s’était proposés pour protéger l’environnement et lutter contre le réchauffement climatique. Toutefois, ces dernières années, ces objectifs se sont de plus en plus heurtés à d’autres initiatives propageant l’utilisation répandue d’éthanol extrait de fleurs des champs. Si on y regarde de plus près, ceux-ci semblent s’opposer, sur les niveaux conceptionnel, éthique et politique, aux objectifs de la réduction des émissions nocives dans la lutte contre le réchauffement climatique ou au moins ne pas être favorables à ceux-ci. Dans ce contexte, un modèle de trajectoires a été proposé pour la mise au point technique de biocarburants, permettant l’évaluation éthique de stratégies de recherche correspondantes. Le principe de l’analyse de chemin est actuellement aussi discuté dans la littérature spécialisée. Dans le cadre du projet, il faut donc procéder à l’évaluation d’une multitude d’éléments et de processus critiques dont la mise au point et les conséquences futures sont par définition aléatoires. Dans le cas des biocarburants, toute décision en faveur de telles mises au point dépend des perspectives d’avenir pronostiquées pour celles-ci plutôt que de l’état de la technique actuel et des effets accessoires qu’entraîne celui-ci.

[1]  C. Bacon Who decides what is fair in fair trade? The agri-environmental governance of standards, access, and price , 2010 .

[2]  M. Goodman The mirror of consumption: Celebritization, developmental consumption and the shifting cultural politics of fair trade , 2010 .

[3]  P. Thompson From a philosopher's perspective, how should animal scientists meet the challenge of contentious issues? , 1999, Journal of animal science.

[4]  Michael Y. Galperin The quest for biofuels fuels genome sequencing , 2008, Environmental microbiology.

[5]  S. Winter,et al.  An evolutionary theory of economic change , 1983 .

[6]  Steven Vogel,et al.  Technology and the Lifeworld: From Garden to Earth , 1993 .

[7]  A. Lovins,et al.  Soft energy paths: Toward a durable peace , 1977 .

[8]  Andrew Pickering,et al.  The mangle of practice : time, agency, and science , 1997 .

[9]  Joni Valkila,et al.  Impacts of Fair Trade certification on coffee farmers, cooperatives, and laborers in Nicaragua , 2010 .

[10]  D. Sarewitz How science makes environmental controversies worse , 2004 .

[11]  A. Goebel,et al.  The agrarian vision: sustainability and environmental ethics , 2012 .

[12]  J. Tait The ethics of biofuels , 2011 .

[13]  Frank W. Geels,et al.  Transformations of Large Technical Systems , 2007 .

[14]  S Pacala,et al.  Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies , 2004, Science.

[15]  Paul Rabinow,et al.  French DNA: Trouble in Purgatory , 1999 .

[16]  D. Kennedy The Biofuels Conundrum , 2007, Science.

[17]  Scott E. Stephens,et al.  Wind Power and Biofuels: A Green Dilemma for Wildlife Conservation , 2011 .

[18]  Graeme Hodge,et al.  New Global Frontiers in Regulation: The Age of Nanotechnology , 2009 .

[19]  Matthew Cotton,et al.  Evaluating the ‘Ethical Matrix’ as a Radioactive Waste Management Deliberative Decision-Support Tool , 2009 .

[20]  J. Soussana,et al.  Adapting agriculture to climate change , 2007, Proceedings of the National Academy of Sciences.

[21]  A. Feenberg The critical theory of technology , 1990 .

[22]  M. Brklacich,et al.  A geography‐based critique of new US biofuels regulations , 2012 .

[23]  M. Finlay Old Efforts at New Uses: A Brief History of Chemurgy and the American Search for Biobased Materials , 2003 .

[24]  L. Lynd,et al.  Beneficial Biofuels—The Food, Energy, and Environment Trilemma , 2009, Science.

[25]  David Zilberman,et al.  Recent Developments in Renewable Technologies: R&D Investment in Advanced Biofuels , 2009 .

[26]  H. Jonas The Imperative of Responsibility: In Search of an Ethics for the Technological Age , 1985 .

[27]  Ben Mepham,et al.  A Framework for the Ethical Analysis of Novel Foods: The Ethical Matrix , 2000 .

[28]  J. Tait,et al.  Ethical Framework for Biofuels , 2011, Science.

[29]  B. Latour Reassembling the Social: An Introduction to Actor-Network-Theory , 2005 .

[30]  Christopher B Field,et al.  The global potential of bioenergy on abandoned agriculture lands. , 2008, Environmental science & technology.

[31]  A. Pickering The mangle of practice : time, agency, and science , 1997 .

[32]  Helge Toutenburg,et al.  The Social Control of Technology , 1982 .

[33]  Roberta Ryan,et al.  The Triple Bottom Line for Sustainable Community Development , 2001 .

[34]  Pete Smith,et al.  Synergies between the mitigation of, and adaptation to, climate change in agriculture , 2010, The Journal of Agricultural Science.

[35]  Wolfgang J. Liebert,et al.  Collingridge’s dilemma and technoscience , 2010, Poiesis Prax..

[36]  Mariam B. Sticklen,et al.  Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol , 2010, Nature Reviews Genetics.

[37]  L. McBride Understanding the Social Dimension of Sustainability , 2009 .

[38]  P. Thompson Agricultural biofuels: two ethical issues. , 2008 .

[39]  Gabrielle Durepos Reassembling the Social: An Introduction to Actor‐Network‐Theory , 2008 .

[40]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[41]  M. Boyce,et al.  Energy development and wildlife conservation in western North America , 2011 .

[42]  Rutger O. van Merkerk,et al.  Tailoring CTA for emerging technologies , 2008 .

[43]  Clarence Lehman,et al.  Bioenergy and Wildlife: Threats and Opportunities for Grassland Conservation , 2009 .

[44]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[45]  Paul B. Thompson,et al.  The Agricultural Ethics of Biofuels: A First Look , 2008, The Ethics of Nanotechnology, Geoengineering and Clean Energy.

[46]  Mark Whipple The Dewey-Lippmann Debate Today: Communication Distortions, Reflective Agency, and Participatory Democracy* , 2005 .

[47]  Patricia Allen,et al.  Food for the future: conditions and contradictions of sustainability , 1993 .

[48]  L. Lynd,et al.  How biotech can transform biofuels , 2008, Nature Biotechnology.

[49]  D. Spracklen,et al.  Carbon Mitigation by Biofuels or by Saving and Restoring Forests? , 2007, Science.

[50]  Edward B. Barbier,et al.  Blueprint 6: For a Sustainable Economy , 2000 .

[51]  Anders S Carlsson,et al.  High-value oils from plants. , 2008, The Plant journal : for cell and molecular biology.

[52]  C. Whitbeck Ethics in Engineering Practice and Research: Responsible Research Conduct , 2011 .

[53]  Kevin D. Haggerty Ethics Creep: Governing Social Science Research in the Name of Ethics , 2004 .

[54]  Wolfgang J. Liebert,et al.  Collingridge ’ s dilemma and technoscience An attempt to provide a clarification from the perspective of the philosophy of science , 2010 .

[55]  D. Ihde Technology and the lifeworld : from garden to earth , 1991 .

[56]  Biofuels: Think Outside the Cornfield , 2008, Science.

[57]  David Schweickart,et al.  Is Sustainable Capitalism Possible , 2010 .

[58]  P. Favero Soft Energy Paths: Toward a Durable Peace , 1978 .