A Multiple Scale Model for Tumor Growth

We present a physiologically structured lattice model for vascular tumor growth which accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor release, and the coupling between these processes. Simulations of the model are used to investigate the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth laws.

[1]  J. Tyson,et al.  Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. , 2001, Journal of theoretical biology.

[2]  B W Kooi,et al.  Numerical methods and parameter estimation of a structured population model with discrete events in the life history. , 2000, Journal of theoretical biology.

[3]  Denis Noble,et al.  The IUPS human physiome project , 2002, Pflügers Archiv.

[4]  J. King,et al.  Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. , 1999, IMA journal of mathematics applied in medicine and biology.

[5]  H. Greenspan On the growth and stability of cell cultures and solid tumors. , 1976, Journal of theoretical biology.

[6]  A. Pries,et al.  Design principles of vascular beds. , 1995, Circulation research.

[7]  J. Adam A mathematical model of tumor growth. II. effects of geometry and spatial nonuniformity on stability , 1987 .

[8]  J. Sherratt,et al.  Travelling wave solutions to a haptotaxis-dominated model of malignant invasion , 2001 .

[9]  J. Sherratt,et al.  Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. , 2002, Journal of theoretical biology.

[10]  Yi Jiang,et al.  On Cellular Automaton Approaches to Modeling Biological Cells , 2003, Mathematical Systems Theory in Biology, Communications, Computation, and Finance.

[11]  E. T. Gawlinski,et al.  A Cellular Automaton Model of Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased Anaerobic Tumor Metabolism , 2001 .

[12]  H. Greenspan Models for the Growth of a Solid Tumor by Diffusion , 1972 .

[13]  K. Kinzler,et al.  Life (and death) in a malignant tumour , 1996, Nature.

[14]  Andrea Dworkin,et al.  Life and death , 1997 .

[15]  S. Dower,et al.  Response of tumour cells to hypoxia: role of p53 and NFkB. , 1998, Molecular pathology : MP.

[16]  M. Chaplain,et al.  Free boundary value problems associated with the growth and development of multicellular spheroids , 1997, European Journal of Applied Mathematics.

[17]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[18]  Z. Agur,et al.  The growth law of primary breast cancer as inferred from mammography screening trials data. , 1998, British Journal of Cancer.

[19]  E. J. Kamprath,et al.  Soil Nutrient Bioavailability—A Mechanistic Approach , 1985 .

[20]  M. Chaplain Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development , 1996 .

[21]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[22]  R. Gatenby,et al.  Application of competition theory to tumour growth: implications for tumour biology and treatment. , 1996, European journal of cancer.

[23]  G. J. Pettet,et al.  The migration of cells in multicell tumor spheroids , 2001, Bulletin of mathematical biology.

[24]  A. Popel,et al.  A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. , 2000, Journal of theoretical biology.

[25]  Jesús A. Izaguirre,et al.  Multi-model Simulations of Chicken Limb Morphogenesis , 2003, International Conference on Computational Science.

[26]  A C Fowler,et al.  A mathematical model of plant nutrient uptake , 2001, Journal of mathematical biology.

[27]  R K Jain,et al.  Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[28]  Andreas Deutsch,et al.  Cellular Automaton Models of Tumor Development: a Critical Review , 2002, Adv. Complex Syst..

[29]  H. Byrne,et al.  Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia , 2001, Bulletin of mathematical biology.

[30]  J. P. Paul,et al.  Biomechanics , 1966 .

[31]  J. Folkman,et al.  SELF-REGULATION OF GROWTH IN THREE DIMENSIONS , 1973, The Journal of experimental medicine.

[32]  Chi V. Dang,et al.  Hypoxia Inhibits G1/S Transition through Regulation of p27 Expression* , 2001, The Journal of Biological Chemistry.

[33]  P K Maini,et al.  A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: Investigation of the current protocol through theoretical modelling results , 2005, Bulletin of mathematical biology.

[34]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001, Bulletin of mathematical biology.

[35]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[36]  J. Crown High-dose chemotherapy of metastatic breast cancer: the end of the beginning? , 1997, British Journal of Cancer.

[37]  P. Carmeliet,et al.  Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis , 1998, Nature.

[38]  M A Konerding,et al.  3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon , 2001, British Journal of Cancer.

[39]  P. Maini,et al.  A cellular automaton model for tumour growth in inhomogeneous environment. , 2003, Journal of theoretical biology.

[40]  Suzanne Cory,et al.  The Bcl-2 family: roles in cell survival and oncogenesis , 2003, Oncogene.

[41]  Mark A. J. Chaplain,et al.  An explicit subparametric spectral element method of lines applied to a tumour angiogenesis system o , 2004 .

[42]  R. Welsh,et al.  Susceptibility to cytotoxic T lymphocyte-induced apoptosis is a function of the proliferative status of the target , 1994, The Journal of experimental medicine.

[43]  Nicolas P. Smith,et al.  Mathematical modelling of the heart: cell to organ , 2002 .

[44]  A. Pries,et al.  Structural adaptation and stability of microvascular networks: theory and simulations. , 1998, The American journal of physiology.

[45]  Denis Noble,et al.  Integrative models of the heart: achievements and limitations , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .

[47]  F R Adler,et al.  How to make a biological switch. , 2000, Journal of theoretical biology.

[48]  J. Adam A mathematical model of tumor growth. III. comparison with experiment , 1987 .

[49]  J. King,et al.  Mathematical modelling of avascular-tumour growth. , 1997, IMA journal of mathematics applied in medicine and biology.

[50]  P. B. Tinker,et al.  Solute Movement in the Soil-Root System. , 1978 .

[51]  Graeme J. Pettet,et al.  A new approach to modelling the formation of necrotic regions in tumours , 1998 .

[52]  S Torquato,et al.  Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. , 2000, Journal of theoretical biology.

[53]  H. Haapasalo,et al.  Low expression of p27 indicates a poor prognosis in patients with high‐grade astrocytomas , 2003, Cancer.

[54]  J. M. Pastor,et al.  Super-rough dynamics on tumor growth , 1998 .

[55]  E. T. Gawlinski,et al.  A reaction-diffusion model of cancer invasion. , 1996, Cancer research.

[56]  David E. Housman,et al.  Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours , 1996, Nature.

[57]  M. Chaplain,et al.  Continuous and Discrete Mathematical Models of Tumor‐Induced Angiogenesis , 1999 .

[58]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[59]  Helen M Byrne,et al.  A multiphase model describing vascular tumour growth , 2003, Bulletin of mathematical biology.

[60]  P. Maini,et al.  A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. , 2004, Journal of theoretical biology.

[61]  D. McElwain,et al.  Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth , 1978 .

[62]  D. Drasdo,et al.  Individual-based approaches to birth and death in avascu1ar tumors , 2003 .

[63]  Helen M. Byrne,et al.  A two-phase model of solid tumour growth , 2003, Appl. Math. Lett..

[64]  H. Biri,et al.  Nuclear p53 Overexpression in Bladder, Prostate, and Renal Carcinomas , 1997, International journal of urology : official journal of the Japanese Urological Association.

[65]  Funk Jo,et al.  Cancer cell cycle control. , 1999 .

[66]  William H. Press,et al.  Numerical recipes in C , 2002 .

[67]  A. Pries,et al.  Resistance to blood flow in microvessels in vivo. , 1994, Circulation research.

[68]  Mark A. J. Chaplain,et al.  A mathematical model of vascular tumour growth and invasion , 1996 .

[69]  J. V. Tucker,et al.  Hierarchical reconstructions of cardiac tissue , 2002 .